Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2.
NPJ Clim Atmos Sci ; 7(1): 145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915306

RESUMO

Recent years have shown that secondary ice production (SIP) is ubiquitous, affecting all clouds from polar to tropical regions. SIP is not described well in models and may explain biases in warm mixed-phase cloud ice content and structure. Through modeling constrained by in-situ observations and its synergy with radar we show that SIP in orographic clouds exert a profound impact on the vertical distribution of hydrometeors and precipitation, especially in seeder-feeder cloud configurations. The mesoscale model simulations coupled with a radar simulator strongly support that enhanced aggregation and SIP through ice-ice collisions contribute to observed spectral bimodalities, skewing the Doppler spectra toward the slower-falling side at temperatures within the dendritic growth layer, ranging from -20 °C to -10 °C. This unique signature provides an opportunity to infer long-term SIP occurrences from the global cloud radar data archive, particularly for this underexplored temperature regime.

3.
Sci Total Environ ; 913: 169683, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160832

RESUMO

Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) µg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Adulto , Humanos , Masculino , Poeira , Poluentes Atmosféricos/análise , Material Particulado/análise , Fumaça/efeitos adversos , Sistema Respiratório/química , Estresse Oxidativo
4.
Chempluschem ; : e202400194, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646973

RESUMO

Nanoparticle formation by Spark Discharge Aerosol Generation offers low-cost fabrication of nanoparticles, without the use of chemicals or vacuum. It produces aerosol particles of a few nanometers in size with high purity. In this work, copper-based -CuO (tenorite) and Cu- nanoparticles are produced, characterized and used to modify face mask air filters, achieving the introduction of antibacterial and antiviral properties. A range of characterization techniques have been employed, down to the atomic level. The majority of the particles are CuO (of a few nanometers in size that agglomerate to form aggregates), the remainder being a small number of larger Cu particles. The particles were deposited on various substrates, mainly fiber filters in order to study them and use them as biocidal agents. On face masks, their antibacterial activity against Escherichia coli (E.coli) results in a 100 % decrease in bacteria cell viability. Their antiviral activity on face masks results in a 90 % reduction of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) viability, 15 minutes post the application of the virus stock solution. This highlights the effectiveness of this approach, its simplicity, its low cost and its excellent environmental credentials.

5.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451445

RESUMO

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira , Pulmão , Europa (Continente) , Tamanho da Partícula
6.
Environ Int ; 166: 107325, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716508

RESUMO

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

7.
Sci Rep ; 11(1): 14477, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262082

RESUMO

Air quality in urban areas and megacities is dependent on emissions, physicochemical process and atmospheric conditions in a complex manner. The impact on air quality metrics of the COVID-19 lockdown measures was evaluated during two periods in Athens, Greece. The first period involved stoppage of educational and recreational activities and the second severe restrictions to all but necessary transport and workplace activities. Fresh traffic emissions and their aerosol products in terms of ultrafine nuclei particles and nitrates showed the most significant reduction especially during the 2nd period (40-50%). Carbonaceous aerosol both from fossil fuel emissions and biomass burning, as well as aging ultrafine and accumulation mode particles showed an increase of 10-20% of average before showing a decline (5 to 30%). It is found that removal of small nuclei and Aitken modes increased growth rates and migration of condensable species to larger particles maintaining aerosol volume.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Nitratos/análise , Material Particulado/análise , Emissões de Veículos/análise , Aerossóis/química , Poluentes Atmosféricos/análise , COVID-19 , Meio Ambiente , Monitoramento Ambiental , Grécia , Humanos , SARS-CoV-2 , Fatores de Tempo
8.
Sci Total Environ ; 780: 146449, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030335

RESUMO

The quantification of the elemental concentration of ambient particulate matter is a challenging task because the observed elemental loadings are not well above the detection limit for most analytical techniques. Although non-destructive nuclear techniques are widely used for the chemical characterization of ambient aerosol, only one multi-element standard reference filter material that mimics ambient aerosol composition has become recently available in the market. To ensure accuracy, reliability and comparability of instruments performance, multiple reference materials with different elemental mass loadings are necessary. In this study, an intercomparison exercise was performed to evaluate the measurement uncertainty and instruments performance using multi-element dust standard reference samples deposited on PTFE filters. The filter samples, produced by means of dust dispersion, were tested in terms of homogeneity, reproducibility and long-term stability (≈40 months). Eight laboratories participated in the exercise. The evaluation of the results reported by the participants was performed by using two sets of reference values: a) the concentrations reported by the Expert Laboratory, b) the robust average concentrations reported by all participants. Most of the reported on the certificate of analysis elements were efficiently detected in the sample loadings prepared as representative for atmospheric samples by the Expert Laboratory. The average absolute relative difference between the reported and the reference values ranged between 0.1% (Ti) and 33.7% (Cr) (CRM-2584). The participants efficiently detected most of the elements except from the elements with atomic number lower than 16 (i.e. P, Al, Mg). The average absolute percentage difference between the participants results and the assigned value as derived by the expert laboratory was 17.5 ± 18.1% (CRM-2583; Cr, Pb excluded) and 16.7 ± 16.7% (CRM-2584; Cr, P excluded). The average "relative robust standard deviation" of the results reported by all participants was 25.1% (CRM-2583) and 22.8% (CRM-2584).

9.
NanoImpact ; 23: 100337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559838

RESUMO

The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe innovation in nanotechnologies. The proposed entity, referred to as "the Centre", will establish a 'one-stop shop' for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability.


Assuntos
Nanoestruturas , Nanotecnologia , Indústrias , Medição de Risco
10.
Environ Pollut ; 239: 82-94, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29649762

RESUMO

Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 104 # cm-3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Ferrovias , Instalações de Transporte/normas , Aerossóis , Grécia , Tamanho da Partícula , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA