Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nano Lett ; 24(27): 8232-8239, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781101

RESUMO

Biocompatible fluorescent agents are key contributors to the theranostic paradigm by enabling real-time in vivo imaging. This study explores the optical properties of phenylenediamine carbon dots (CDs) and demonstrates their potential for fluorescence imaging in cells and brain blood vessels. The nonlinear absorption cross-section of the CDs was measured and achieved values near 50 Goeppert-Mayer (GM) units with efficient excitation in the 775-895 nm spectral range. Mesoporous vaterite nanoparticles were loaded with CDs to examine the possibility of a biocompatible imaging platform. Efficient one- and two-photon imaging of the CD-vaterite composites uptaken by diverse cells was demonstrated. For an in vivo scenario, CD-vaterite composites were injected into the bloodstream of a mouse, and their flow was monitored within the blood vessels of the brain through a cranial window. These results show the potential of the platform for high-brightness biocompatible imaging with the potential for both sensing and simultaneous drug delivery.


Assuntos
Encéfalo , Carbono , Pontos Quânticos , Animais , Carbono/química , Camundongos , Encéfalo/diagnóstico por imagem , Pontos Quânticos/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Carbonato de Cálcio/química , Humanos , Nanopartículas/química , Corantes Fluorescentes/química
2.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230322, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39246080

RESUMO

Polymers have distinctive optical properties and facile fabrication methods that have been well-established. Therefore, they have immense potential for nanophotonic devices. Here, we demonstrate the temperature-sensing potential of SU8-meta-phenylenediamine (SU8-mPD), produced by epoxy amination of the SU-8 polymer. Its properties were examined through a series of molecular structural techniques and optical methods. Thin layers have demonstrated optical emission and absorption in the visible range around 420 and 520 nm, respectively, alongside a strong thermal responsivity, characterized by the 18 ppm °C-1 expansion coefficient. A photonic chip, comprising a thin 5-10 µm SU8-mPD layer, encased between parallel silver and/or gold thin film mirrors, has been fabricated. When pumped by an external light source, this assembly generates a pronounced fluorescent signal that is superimposed with the Fabry-Pérot (FP) resonant response. The chip undergoes mechanical deformation in response to temperature changes, thereby shifting the FP resonance and encoding temperature information into the fluorescence output spectrum. The time response of the device was estimated to be below 1 s for heating and a few seconds for cooling, opening a new avenue for optical sensing using SU8-based polymers. Thermoresponsive resonant structures, encompassing strong tunable fluorescent properties, can further enrich the functionalities of nanophotonic polymer-based platforms. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

3.
Opt Express ; 30(4): 5192-5199, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209488

RESUMO

Suppressing reflections from material boundaries has always been an objective, common to many disciplines, where wave phenomena play a role. While impedance difference between materials necessarily leads to a wave reflection, introducing matching elements can almost completely suppress this phenomenon. However, many impedance matching approaches are based on resonant conditions, which come at a price of narrow bandwidth operation. Although various impedance matching architectures have been developed in the past, many of them fail to produce a broadband and flat (ripple-free) transmission, particularly in the presence of strong chromatic dispersion. Here we propose and demonstrate an approach for designing an optimal matching stack capable of providing a flat broadband transmission even in the presence of significant group velocity dispersion. As an experimental example for the method verification, we used a strong modal dispersion in a rectangular waveguide, operating close to a mode cut-off. The waveguide core consists of alternating polymer sections with a variable filling factor, realized using additive manufacturing. As a result, a broadband matching in the range of 7-8GHz was demonstrated and proved to significantly outperform the standard binomial transformer solution. The proposed method can find use across different disciplines, including optics, acoustics and wireless communications, where undesired reflections can significantly degrade system's performances.

4.
Nano Lett ; 19(10): 7062-7071, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31496253

RESUMO

Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.


Assuntos
Carbonato de Cálcio/metabolismo , Nanopartículas/metabolismo , Folhas de Planta/metabolismo , Saxifragaceae/metabolismo , Cristalização , Luz , Processos Fotoquímicos
5.
Opt Express ; 27(7): 9868-9878, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045135

RESUMO

Optical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs. Incorporation of magnetite nanoparticles into polyelectrolyte layers renders HC-MFs visible for MRI and induces the red-shift in their transmission spectra. Specifically, the transmission shifts up to 60 nm have been revealed for the several-layers composite coating, along with the high-quality contrast of HC-MFs in MRI scans. Our results shed light on marrying fiber-based endoscopy with MRI to open novel possibilities for minimally invasive clinical diagnostics and surgical procedures in vivo.

6.
Nano Lett ; 18(8): 5024-5029, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29949377

RESUMO

The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, for which precise control over mechanical path and stability is required. Although conventional optical tweezers are based on refractive optics, the development of compact trapping devices that could be integrated within fluid cells is in high demand. Here, a plasmonic polarization-sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges in trapping objects in the axial direction outside the depth of focus, bifocal Fresnel meta-lens demonstrates the capability to manipulate a bead along a 4 µm line. An additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled the accurate mapping of optical potentials via a particle-tracking algorithm. Auxiliary micro- and nanostructures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including transport, trapping, and sorting, which are in high demand for lab-on-a-chip applications and many others.

7.
Opt Express ; 26(13): 17541-17548, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119565

RESUMO

Metamaterials based on arrays of aligned plasmonic nanowires have recently attracted significant attention due to their unique optical properties that combine tunable strong anisotropy and nonlocality. These optical responses provide a platform for implementation of novel sensing, imaging, and quantum optics applications. Basic building blocks, used for construction of those peculiar composites, are plasmonic metals, such as gold and silver, which have moderate negative values of permittivities at the optical spectral range. Scaling the plasmonic behavior to lower frequencies remains a longstanding challenge also owing to the emergence of strong spatial dispersion in homogenized artificial composites. At lower THz and GHz frequencies, the electromagnetic response of noble metals approaches that of perfect electric conductors, preventing straightforward scaling of visible-frequency plasmonics to the frequency domains that are important for a vast range of applications, including wireless communications, microwave technologies and many others. Here we demonstrate that both extreme anisotropy (so-called hyperbolicity) and nonlocality of artificial composites can be achieved and designed in arrays of corrugated perfectly conducting wires at relatively low GHz frequencies. The key concept is based on hybridization of spoof plasmon polariton modes that in turn emulate surface polariton waves in systems with corrugated interfaces. The method makes it possible to map the recent developments in the field of plasmonics and metamaterials to the domain of THz and RF photonics.

8.
J Opt Soc Am A Opt Image Sci Vis ; 33(10): 1910-1916, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828093

RESUMO

Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to the surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As a result, properly designed electromagnetic environments could govern wave phenomena and tailor various characteristics. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial), are analyzed both numerically and experimentally. The effect of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on the scattering phenomena is studied in detail. It is shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering are experimentally observed. Numerical analysis is in agreement with the experiment, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.

9.
Opt Express ; 23(24): 30730-8, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698705

RESUMO

The detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 103-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields. Alternatively, the observation of SHG from the metamaterial itself can be used to detect and track a nanoparticle without a nonlinear response. The antenna allows an optical resolution of several nanometers in tracking the nanoparticle's location via observations of the far-field second-harmonic radiation pattern.

10.
Phys Rev Lett ; 114(18): 185501, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26001008

RESUMO

We study the scattering of polaritons by free electrons in hyperbolic photonic media and demonstrate that the unconventional dispersion and high local density of states of electromagnetic modes in composite media with hyperbolic dispersion can lead to a giant Compton-like shift and dramatic enhancement of the scattering cross section. We develop a universal approach to study multiphoton processes in nanostructured media and derive the intensity spectrum of the scattered radiation for realistic metamaterial structures.

11.
Opt Express ; 22(9): 10987-94, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921796

RESUMO

The integration of optical metamaterials within silicon integrated photonic circuitry bears significantly potential in the design of low-power, nanoscale footprint, all-optical functionalities. We propose a novel concept and provide detailed analysis of an on-chip ultrafast all-optical modulator based on an hyperbolic metamaterial integrated in a silicon waveguide. The anisotropic metamaterial based on gold nanorods is placed on top of the silicon waveguide to form a modulator with a 300x440x600 nm(3) footprint. For the operating wavelength of 1.5 µm, the optimized geometry of the device has insertion loss of about 5 dB and a modulation depth of 35% with a sub-ps switching rate. The switching energy estimated from nonlinear transient dynamic numerical simulations is 3.7 pJ/bit when the transmission is controlled optically at a wavelength of 532 nm, resonant with the transverse plasmonic mode of the metamaterial. The switching mechanism is based on the control of the hybridization of eigenmodes in the metamaterial slab and the Si waveguide.

12.
Adv Sci (Weinh) ; 11(5): e2305202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044325

RESUMO

The propulsion and acceleration of nanoparticles with light have both fundamental and applied significance across many disciplines. Needle-free injection of biomedical nano cargoes into living tissues is among the examples. Here a new physical mechanism of laser-induced particle acceleration is explored, based on abnormal optothermal expansion of mesoporous vaterite cargoes. Vaterite nanoparticles, a metastable form of calcium carbonate, are placed on a substrate, underneath a target phantom, and accelerated toward it with the aid of a short femtosecond laser pulse. Light absorption followed by picosecond-scale thermal expansion is shown to elevate the particle's center of mass thus causing acceleration. It is shown that a 2 µm size vaterite particle, being illuminated with 0.5 W average power 100 fsec IR laser, is capable to overcome van der Waals attraction and acquire 15m sec-1 velocity. The demonstrated optothermal laser-driven needle-free injection into a phantom layer and Xenopus oocyte in vitro promotes the further development of light-responsive nanocapsules, which can be equipped with additional optical and biomedical functions for delivery, monitoring, and controllable biomedical dosage to name a few.

13.
Nanoscale ; 16(29): 13945-13952, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38980062

RESUMO

Hollow core fibers, supporting waveguiding in a void, open a room of opportunities for numerous applications owing to an extended light-matter interaction distance and relatively high optical confinement. Decorating an inner capillary with functional materials allows tailoring the fiber's optical properties further and turns the structure into a functional device. Here, we functionalize an anti-resonant hollow-core fiber with 18 nm-size gold nanoparticles, approaching a uniform 45% surface coverage along 10 s of centimeters along its inner capillary. Owing to a moderately low overlap between the fundamental mode and the gold layer, the fiber maintains its high transmission properties; nevertheless, the entire structure experiences considerable heating, which is observed and quantified with the aid of a thermal camera. The hollow core and the surrounding capillary are subsequently filled with ethanol and thermo-optical heating is demonstrated. We also show that at moderate laser intensities, the liquid inside the fiber begins to boil and, as a result, the optical guiding is destroyed. The gilded hollow core fiber and its high thermal-optical responsivity suggest considering the structure as an efficient optically driven catalytic reactor in applications where either small reaction volumes or remote control over a process are demanded.

14.
Opt Express ; 21(2): 2147-53, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389195

RESUMO

The concept of spaser as the coherent near-field generator and nanolaser based on nanoscale plasmonic resonators has been successfully demonstrated in number of experiments. Here we have developed the theoretical framework for the basic linewidth description of these active plasmonic structures and, in particular, linewidth enhancement - additional line broadening due to the resonator noise. In order to achieve this, we have introduced explicitly the time dependence in the quasistatic description of localized surface plasmon resonances via inclusion of the dispersion of a spectral parameter defining the resonant frequency. Linewidth enhancement factor was estimated for semiconductor gain medium and was found to be of order of 3 to 6, strongly depending on carrier density in the active layer, and resulting in more than order of magnitude broader linewidth compared to that, predicted by the Schawlow-Townes theory.


Assuntos
Desenho Assistido por Computador , Lasers , Modelos Teóricos , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Phys Rev Lett ; 111(3): 036804, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909352

RESUMO

Optical forces constitute a fundamental phenomenon important in various fields of science, from astronomy to biology. Generally, intense external radiation sources are required to achieve measurable effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined by an anisotropy, in order to maximize their radiation efficiency. We develop a universal quantum-mechanical theory of self-induced torques acting on an emitter placed in a material environment. The theoretical framework is based on the radiation reaction approach utilizing the rigorous Langevin local quantization of electromagnetic excitations. We show more than 2 orders of magnitude enhancement of the self-torque by an anisotropic metamaterial with hyperbolic dispersion, having negative ratio of permittivity tensor components, in comparison with conventional anisotropic crystals with the highest naturally available anisotropy.

16.
Nano Lett ; 12(12): 6309-14, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23163587

RESUMO

The Hanle effect, one of the first manifestations of quantum theory introducing the concept of coherent superposition between pure states, plays a key role in numerous aspects of science varying from applicative spectroscopy to fundamental astrophysical investigations. Optical analogues of quantum effects help to achieve deeper understanding of quantum phenomena and, in turn, to develop cross-disciplinary approaches to realizations of new applications in photonics. Here we show that metallic nanostructures can be designed to exhibit a plasmonic analogue of the quantum Hanle effect and the associated polarization rotation. In the original Hanle effect, time-reversal symmetry is broken by a static magnetic field. We achieve this by introducing dissipative level crossing of localized surface plasmons due to nonuniform losses, designed using a non-Hermitian formulation of quantum mechanics. Such artificial plasmonic "atoms" have been shown to exhibit strong circular birefringence and circular dichroism which depends on the value of loss or gain in the metal-dielectric nanostructure.


Assuntos
Metais/química , Nanoestruturas/química , Nanotecnologia , Teoria Quântica , Ressonância de Plasmônio de Superfície
17.
Cryst Growth Des ; 23(11): 8009-8017, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937190

RESUMO

Controllable continuous release of functional materials from capsules is one of the unmet functions of theragnosis particles; on this way, understanding cargo-fluid interactions in vitro is an essential milestone. We develop a flexible platform to investigate single particle-fluid interactions utilizing a glass micropipette as a highly localized flow source around an optically trapped particle. In proof-of-concept experiments, this microparticle is sensitive to local microflow distribution, thus serving as a probe. The very same flows are capable of the particle rotating (i.e., vaterite drug cargo) at frequencies dependent on the mutual particle-pipette position. Platform flexibility comes from different interactions of a tweezer (optical forces) and a pipette (mechanical/hydrodynamical) with a microparticle, which makes this arrangement an ideal microtool. We studied the vaterite dissolution kinetics and demonstrated that it can be controlled on demand, providing a wide cargo release dynamic rate. Our results promote the use of inorganic mesoporous nanoparticles as a nanomedicine platform.

18.
Colloids Surf B Biointerfaces ; 222: 113104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584449

RESUMO

The growing biomedical challenges impose the continuous development of novel platforms. Ensuring the biocompatibility of drug delivery and implantable biomedical devices is an essential requirement. Calcium carbonate (CaCO3) in the form of vaterite nanoparticles is a promising platform, which has demonstrated distinctive optical and biochemical properties, including high porosity and metastability. In this study, the biocompatibility of differently shaped CaCO3 vaterite particles (toroids, ellipsoids, and spheroids) are evaluated by bacterial toxicity mode-of-action with a whole-cell biosensor. Different Escherichia coli (E. coli) strains were used in the bioluminescent assay, including cytotoxicity, genotoxicity and quorum-sensing. Firstly, both scanning electron microscopy (SEM) and fluorescence microscopy characterizations were conducted. Bacterial cell death and aggregates were observed only in the highest tested concentration of the vaterite particles, especially in toroids 15-25 µm. After, the bioluminescent bacterial panel was exposed to the vaterite particles, and their bioluminescent signal reflected their toxicity mode-of-action. The vaterite particles resulted in an induction factor (IF > 1) on the bacterial panel, which was higher after exposure to the toroids (1.557 ≤ IF ≤ 2.271) and ellipsoids particles (1.712 ≤ IF ≤ 2.018), as compared to the spheroids particles (1.134 ≤ IF ≤ 1.494), in all the tested bacterial strains. Furthermore, the vaterite particles did not affect the viability of the bacterial cells. The bacterial monitoring demonstrated the biofriendly nature of especially spheroids vaterite nanoparticles.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/química , Escherichia coli , Sistemas de Liberação de Medicamentos
19.
Sci Rep ; 13(1): 12158, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500742

RESUMO

Laser beams, capable of controlling the mechanical motion of micron-scale objects, can serve as a tool, enabling investigations of numerous interaction scenarios under full control. Beyond pure electromagnetic interactions, giving rise to conventional gradient forces and radiation pressure, environment-induced thermal effects can play a role and, in certain cases, govern the dynamics. Here we explore a thermocapillary Marangoni effect, which is responsible for creating long-range few hundreds of nano-Newton forces, acting on a bubble around a 'gilded vaterite' nanoparticle. Decorating calcium carbonate spherulite (the vaterite) with gold nanoseeds allows tuning its optical absorption and, as a result, controlling its temperature in a solution. We demonstrate that keeping a balance between electromagnetic and thermal interactions allows creating of a stable micron-scale bubble around the particle and maintaining its size over time. The bubbles are shown to remain stable over minutes even after the light source is switched off. The bubbles were shown to swim toward a laser focus for over 400-µm distances across the sample. Optothermal effects, allowing for efficient transport, stable bubble creation, and particle-fluid interaction control, can grant nano-engineered drug delivery capsules with additional functions toward a theragnostic paradigm shift.

20.
ACS Appl Mater Interfaces ; 15(6): 8590-8600, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36729720

RESUMO

Organic crystals with unique nonlinear optical properties have been attracting attention owing to their capability to outperform their conventional nonorganic counterparts. Since nonlinear material responses are linked to a crystal's internal microscopic structure, molecular engineering of maximally unharmonic quantum potentials can boost macromolecular susceptibilities. Here, large-scale kainic acid (kainate) single crystals were synthesized, and their linear and nonlinear optical properties were studied in a broad spectral range, spanning the visible to THz spectral regions. The non-centrosymmetric zwitterionic crystallization, molecular structure, and intermolecular arrangement were found to act as additive donor-acceptor domains, enhancing the efficiency of the intrinsic second-order optical nonlinearity of this pure enantiomeric crystal. Molecular simulations and experimental analysis were performed to retrieve the crystals' properties. The crystals were predicted and found to have good transparency in a broad spectral range from the UV to the infrared (0.2-20 µm). Second-harmonic generation was measured for ultrashort pumping wavelengths between 800 and 2400 nm, showing an enhanced response around 600 nm. Broadband THz generation was demonstrated with a detection limited bandwidth of >8 THz along with emission efficiencies comparable to and prevailing those of commercial ZnTe crystals. The broadband nonlinear response and high transparency make kainate crystals extremely attractive for realizing a range of nonlinear optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA