Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 186(3): 543-559.e19, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669484

RESUMO

Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.


Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Aprendizagem/fisiologia , Neurônios , Transmissão Sináptica/fisiologia , Mamíferos
2.
Nature ; 627(8005): 821-829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448584

RESUMO

Animals in the natural world constantly encounter geometrically complex landscapes. Successful navigation requires that they understand geometric features of these landscapes, including boundaries, landmarks, corners and curved areas, all of which collectively define the geometry of the environment1-12. Crucial to the reconstruction of the geometric layout of natural environments are concave and convex features, such as corners and protrusions. However, the neural substrates that could underlie the perception of concavity and convexity in the environment remain elusive. Here we show that the dorsal subiculum contains neurons that encode corners across environmental geometries in an allocentric reference frame. Using longitudinal calcium imaging in freely behaving mice, we find that corner cells tune their activity to reflect the geometric properties of corners, including corner angles, wall height and the degree of wall intersection. A separate population of subicular neurons encode convex corners of both larger environments and discrete objects. Both corner cells are non-overlapping with the population of subicular neurons that encode environmental boundaries. Furthermore, corner cells that encode concave or convex corners generalize their activity such that they respond, respectively, to concave or convex curvatures within an environment. Together, our findings suggest that the subiculum contains the geometric information needed to reconstruct the shape and layout of naturalistic spatial environments.


Assuntos
Meio Ambiente , Percepção de Forma , Hipocampo , Neurônios , Animais , Feminino , Masculino , Camundongos , Cálcio/análise , Cálcio/metabolismo , Percepção de Forma/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Propriedades de Superfície
3.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429962

RESUMO

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Assuntos
Encéfalo , Cálcio , Animais , Camundongos , Iluminação , Microscopia , Fótons
4.
Nat Rev Neurosci ; 22(8): 472-487, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34230644

RESUMO

An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Recompensa , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Humanos , Vias Neurais/fisiologia
5.
Nat Rev Neurosci ; 22(10): 637-649, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453151

RESUMO

Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.


Assuntos
Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Rede Nervosa/fisiologia , Percepção Espacial/fisiologia , Animais , Córtex Entorrinal/citologia , Hipocampo/citologia , Humanos , Modelos Neurológicos , Rede Nervosa/citologia
6.
Cell ; 147(5): 1159-70, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22100643

RESUMO

Entorhinal grid cells have periodic, hexagonally patterned firing locations that scale up progressively along the dorsal-ventral axis of medial entorhinal cortex. This topographic expansion corresponds with parallel changes in cellular properties dependent on the hyperpolarization-activated cation current (Ih), which is conducted by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. To test the hypothesis that grid scale is determined by Ih, we recorded grid cells in mice with forebrain-specific knockout of HCN1. We find that, although the dorsal-ventral gradient of the grid pattern was preserved in HCN1 knockout mice, the size and spacing of the grid fields, as well as the period of the accompanying theta modulation, was expanded at all dorsal-ventral levels. There was no change in theta modulation of simultaneously recorded entorhinal interneurons. These observations raise the possibility that, during self-motion-based navigation, Ih contributes to the gain of the transformation from movement signals to spatial firing fields.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Canais de Potássio/metabolismo , Animais , Mapeamento Encefálico , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Interneurônios , Masculino , Camundongos , Camundongos Knockout , Canais de Potássio/genética
8.
Nat Rev Neurosci ; 22(9): 586, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302126
9.
Proc Natl Acad Sci U S A ; 115(50): E11798-E11806, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482856

RESUMO

Upon encountering a novel environment, an animal must construct a consistent environmental map, as well as an internal estimate of its position within that map, by combining information from two distinct sources: self-motion cues and sensory landmark cues. How do known aspects of neural circuit dynamics and synaptic plasticity conspire to accomplish this feat? Here we show analytically how a neural attractor model that combines path integration of self-motion cues with Hebbian plasticity in synaptic weights from landmark cells can self-organize a consistent map of space as the animal explores an environment. Intriguingly, the emergence of this map can be understood as an elastic relaxation process between landmark cells mediated by the attractor network. Moreover, our model makes several experimentally testable predictions, including (i) systematic path-dependent shifts in the firing fields of grid cells toward the most recently encountered landmark, even in a fully learned environment; (ii) systematic deformations in the firing fields of grid cells in irregular environments, akin to elastic deformations of solids forced into irregular containers; and (iii) the creation of topological defects in grid cell firing patterns through specific environmental manipulations. Taken together, our results conceptually link known aspects of neurons and synapses to an emergent solution of a fundamental computational problem in navigation, while providing a unified account of disparate experimental observations.


Assuntos
Comportamento Exploratório/fisiologia , Modelos Neurológicos , Percepção Espacial/fisiologia , Animais , Fenômenos Biofísicos , Elasticidade , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Retroalimentação Sensorial/fisiologia , Aprendizagem/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia
10.
Nature ; 576(7785): 42-43, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792416
11.
J Neurophysiol ; 120(4): 2091-2106, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089025

RESUMO

The sensory signals generated by self-motion are complex and multimodal, but the ability to integrate these signals into a unified self-motion percept to guide navigation is essential for animal survival. Here, we summarize classic and recent work on self-motion coding in the visual and entorhinal cortices of the rodent brain. We compare motion processing in rodent and primate visual cortices, highlighting the strengths of classic primate work in establishing causal links between neural activity and perception, and discuss the integration of motor and visual signals in rodent visual cortex. We then turn to the medial entorhinal cortex (MEC), where calculations using self-motion to update position estimates are thought to occur. We focus on several key sources of self-motion information to MEC: the medial septum, which provides locomotor speed information; visual cortex, whose input has been increasingly recognized as essential to both position and speed-tuned MEC cells; and the head direction system, which is a major source of directional information for self-motion estimates. These inputs create a large and diverse group of self-motion codes in MEC, and great interest remains in how these self-motion codes might be integrated by MEC grid cells to estimate position. However, which signals are used in these calculations and the mechanisms by which they are integrated remain controversial. We end by proposing future experiments that could further our understanding of the interactions between MEC cells that code for self-motion and position and clarify the relationship between the activity of these cells and spatial perception.


Assuntos
Córtex Entorrinal/fisiologia , Percepção de Movimento , Córtex Visual/fisiologia , Animais , Conectoma , Locomoção , Primatas , Desempenho Psicomotor , Roedores
12.
J Physiol ; 594(22): 6501-6511, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-26563618

RESUMO

Ubiquitous throughout the animal kingdom, path integration-based navigation allows an animal to take a circuitous route out from a home base and using only self-motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place-specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration-based spatial navigation. Supporting this idea, grid cells appear to provide an environment-independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark-driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations.


Assuntos
Células de Grade/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação/fisiologia , Animais , Meio Ambiente , Modelos Neurológicos
13.
Nature ; 521(7551): 165-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971505

Assuntos
Animais
14.
Hippocampus ; 24(3): 249-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24638961

RESUMO

Cell assemblies code information in both the temporal and spatial domain. One tractable example of temporal coding is the phenomenon of phase precession. In medial entorhinal cortex, theta-phase precession is observed in spatially specific grid cells, with grid spike-times shifting to earlier phases of the extracellular theta rhythm as the animal passes through the grid field. Although the exact mechanisms underlying spatial-temporal coding remain unknown, computational work points to single-cell oscillatory activity as a biophysical mechanism capable of producing phase precession. Support for this idea comes from observed correlations between single-cell resonance and entorhinal neurons characterized by phase precession. Here, we take advantage of the absence of single-cell theta-frequency resonance in hyperpolarization-activated cyclic nucleotide-gated (HCN) 1 knockout (KO) mice to examine the relationship between intrinsic rhythmicity and phase precession. We find phase precession is highly comparable between forebrain-restricted HCN1 KO and wild-type mice. Grid fields in HCN1 KO mice display more experience-dependent asymmetry however, consistent with reports of enhanced long-term potentiation in the absence of HCN1 and raising the possibility that the loss of HCN1 improves temporal coding via the rate-phase transformation. Combined, our results clarify the role of HCN1 channels in temporal coding and constrain the number of possible mechanisms generating phase precession. © 2013 Wiley Periodicals, Inc.


Assuntos
Córtex Entorrinal/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais de Potássio/fisiologia , Comportamento Espacial/fisiologia , Ritmo Teta/fisiologia , Potenciais de Ação , Animais , Eletroencefalografia , Córtex Entorrinal/citologia , Comportamento Exploratório , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/deficiência , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Periodicidade , Canais de Potássio/deficiência , Canais de Potássio/genética , Recompensa , Fatores de Tempo
15.
Elife ; 122024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363198

RESUMO

A behavioral strategy crucial to survival is directed navigation to a goal, such as a food or home location. One potential neural substrate for supporting goal-directed navigation is the parahippocampus, which contains neurons that represent an animal's position, orientation, and movement through the world, and that change their firing activity to encode behaviorally relevant variables such as reward. However, little prior work on the parahippocampus has considered how neurons encode variables during goal-directed navigation in environments that dynamically change. Here, we recorded single units from rat parahippocampal cortex while subjects performed a goal-directed task. The maze dynamically changed goal-locations via a visual cue on a trial-to-trial basis, requiring subjects to use cue-location associations to receive reward. We observed a mismatch-like signal, with elevated neural activity on incorrect trials, leading to rate-remapping. The strength of this remapping correlated with task performance. Recordings during open-field foraging allowed us to functionally define navigational coding for a subset of the neurons recorded in the maze. This approach revealed that head-direction coding units remapped more than other functional-defined units. Taken together, this work thus raises the possibility that during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal's behavioral performance.


Assuntos
Hipocampo , Navegação Espacial , Animais , Ratos , Córtex Cerebral , Objetivos , Hipocampo/fisiologia , Neurônios/fisiologia , Navegação Espacial/fisiologia
16.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38234842

RESUMO

Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.

17.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659809

RESUMO

Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.

18.
Curr Opin Neurobiol ; 78: 102665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542882

RESUMO

The brain can represent behaviorally relevant information through the firing of individual neurons as well as the coordinated firing of ensembles of neurons. Neurons in the hippocampus and associated cortical regions participate in a variety of types of ensembles to support navigation. These ensemble types include single cell codes, population codes, time-compressed sequences, behavioral sequences, and engrams. We present the physiological basis and behavioral relevance of ensemble firing. We discuss how these traditional definitions of ensembles can constrain or expand potential analyses due to the underlying assumptions and abstractions made. We highlight how coding can change at the ensemble level while underlying single cell codes remain intact. Finally, we present how ensemble definitions could be broadened to better understand the full complexity of the brain.


Assuntos
Encéfalo , Neurônios , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Comportamento Animal/fisiologia
19.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747825

RESUMO

Neurons in navigational brain regions provide information about position, orientation, and speed relative to environmental landmarks. These cells also change their firing patterns ("remap") in response to changing contextual factors such as environmental cues, task conditions, and behavioral state, which influence neural activity throughout the brain. How can navigational circuits preserve their local computations while responding to global context changes? To investigate this question, we trained recurrent neural network models to track position in simple environments while at the same time reporting transiently-cued context changes. We show that these combined task constraints (navigation and context inference) produce activity patterns that are qualitatively similar to population-wide remapping in the entorhinal cortex, a navigational brain region. Furthermore, the models identify a solution that generalizes to more complex navigation and inference tasks. We thus provide a simple, general, and experimentally-grounded model of remapping as one neural circuit performing both navigation and context inference.

20.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798242

RESUMO

Ketamine, a rapid-acting anesthetic and acute antidepressant, carries undesirable spatial cognition side effects including out-of-body experiences and spatial memory impairments. The neural substrates that underlie these alterations in spatial cognition however, remain incompletely understood. Here, we used electrophysiology and calcium imaging to examine ketamine's impacts on the medial entorhinal cortex and hippocampus, which contain neurons that encode an animal's spatial position, as mice navigated virtual reality and real world environments. Ketamine induced an acute disruption and long-term re-organization of entorhinal spatial representations. This acute ketamine-induced disruption reflected increased excitatory neuron firing rates and degradation of cell-pair temporal firing rate relationships. In the reciprocally connected hippocampus, the activity of neurons that encode the position of the animal was suppressed after ketamine administration. Together, these findings point to disruption in the spatial coding properties of the entorhinal-hippocampal circuit as a potential neural substrate for ketamine-induced changes in spatial cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA