Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374380

RESUMO

The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients' management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.


Assuntos
Biomarcadores/metabolismo , Calcinose/patologia , Prognóstico , Doenças Mamárias/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Homeostase , Humanos , Pneumopatias/metabolismo , Metástase Neoplásica , Osteoblastos/metabolismo , Doenças Ovarianas/metabolismo , Neoplasias Ovarianas/metabolismo , Doenças da Glândula Tireoide/metabolismo
2.
Magn Reson Imaging ; 105: 46-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939968

RESUMO

OBJECTIVE: Gadolinium-based contrast agent needs time to leak into the extravascular-extracellular space, leak back into the vascular space, and reach an equilibrium state. For this reason, acquisition times of <10 min may cause inaccurate estimation of pharmacokinetic parameters. Since no studies have been conducted on the influence of long scan times on DCE-MRI parameters in brain tumors, the aim of this study is to investigate the variation of DCE-MRI-derived kinetic parameters as a function of acquisition time, from 5 to 10 min in brain tumors. MATERIALS AND METHODS: Fifty-two patients with histologically confirmed brain tumors were enrolled in this retrospective study, and examination at 3 T, DCE-MRI, with scan duration of 10 min, was used for retrospective generation of 6 sets of quantitative DCE-MRI maps (Ktrans, Ve and Kep) from 5 to 10 min. Features were extracted from the DCE-MRI maps in contrast enhancement (CE) volumes. Kruskal-Wallis with post-hoc correction and coefficient of variation (CoV) were used as statistical test to compare DCE-MRI maps obtained from 6 data sets. SIGNIFICANCE: p < 0.05. RESULTS: No differences in Ktrans features in CE volumes between different scan durations. Ve, Kep features in CE volumes were influenced by different data length. The highest number of significantly different Ve and Kep features in CE volumes were between 5 min and 10 min (p < 0.013), 5 min and 9 min (p < 0.044), 6 min and 10 min (p < 0.040). CoV of Kep was reduced from 5 min to 10 min, going from highly variable (CoV = 0.70) to mildly variable (CoV = 0.42). CONCLUSION: Kep and Ve were time-dependent in brain tumors, so a longer scan time is needed to obtain reliable parameter values. Ktrans was found to be time-independent, as it remains the same in all 6 acquisition times and is the only reliable parameter with short acquisition times.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
3.
Cells ; 9(6)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498363

RESUMO

This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.


Assuntos
Proteína Morfogenética Óssea 2/genética , Mama/metabolismo , Mama/patologia , Calcinose/genética , Transição Epitelial-Mesenquimal , Variação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/ultraestrutura , Núcleo Celular/metabolismo , Feminino , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Modelos Biológicos , Ligante RANK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA