Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(20): 14728-14735, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37769169

RESUMO

Azetidinones with a sulfenyl group on the ß-lactam nitrogen atom show interesting biological activities as antimicrobial agents and enzyme inhibitors. We report in the present study a versatile synthesis of N-sulfenylated azetidinones starting from the corresponding N-bromo derivatives by means of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical as the catalyst and disulfides. Preparation of N-halo-azetidinones was studied and optimized. The reactivity of N-bromo-azetidinone 2a as a model compound in the presence of TEMPO radical was investigated by NMR and electron paramagnetic resonance (EPR) spectroscopy studies. Optimization of the reaction conditions allowed the access of N-alkylthio- or N-arylthio-azetidinones from 55 to 92% yields, and the method exhibited a good substrate scope.

2.
Bioorg Chem ; 120: 105580, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066318

RESUMO

4-Acetoxy-azetidin-2-one is an extremely useful intermediate widely applied for the synthesis of several biologically active ß-lactam compounds. However, it is available as a racemic mixture that could limit its application in the synthesis of enantiopure products. Herein we evaluated the use of lipases in a kinetic resolution (KR) process to finally obtain 4-acetoxy-zetidin-2-one as separated pure enantiomers. From a preliminary screening on a set of commercial enzymes, Pseudomonas fluorescens emerged as the most suitable lipase that allowed to obtain good conversions and excellent enantiomeric excesses. On the enantiomerically pure 4-acetoxy-azetidin-2-ones some nucleophilic substitutions and N-thio-alkylation reactions were tested in order to evaluate the stereochemical integrity at the C-4 position.


Assuntos
Lipase , Biocatálise , Catálise , Cinética , Lipase/metabolismo , Estereoisomerismo
3.
ACS Appl Bio Mater ; 6(1): 296-308, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36542733

RESUMO

Skin wound healing is a highly complex process that continues to represent a major medical problem, due to chronic nonhealing wounds in several classes of patients and to possible fibrotic complications, which compromise the function of the dermis. Integrins are transmembrane receptors that play key roles in this process and that offer a recognized druggable target. Our group recently synthesized GM18, a specific agonist for α4ß1, an integrin that plays a role in skin immunity and in the migration of neutrophils, also regulating the differentiated state of fibroblasts. GM18 can be combined with poly(l-lactic acid) (PLLA) nanofibers to provide a controlled release of this agonist, resulting in a medication particularly suitable for skin wounds. In this study, we first optimized a GM18-PLLA nanofiber combination with a 7-day sustained release for use as skin wound medication. When tested in an experimental pressure ulcer in diabetic mice, a model for chronic nonhealing wounds, both soluble and GM18-PLLA formulations accelerated wound healing, as well as regulated extracellular matrix synthesis toward a nonfibrotic molecular signature. In vitro experiments using the adhesion test showed fibroblasts to be a principal GM18 cellular target, which we then used as an in vitro model to explore possible mechanisms of GM18 action. Our results suggest that the observed antifibrotic behavior of GM18 may exert a dual action on fibroblasts at the α4ß1 binding site and that GM18 may prevent profibrotic EDA-fibronectin-α4ß1 binding and activate outside-in signaling of the ERK1/2 pathways, a critical component of the wound healing process.


Assuntos
Diabetes Mellitus Experimental , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Integrina beta1 , Integrinas , Cicatrização , Integrina alfa4/metabolismo
4.
J Funct Biomater ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662071

RESUMO

Laccases are oxidative enzymes that could be good candidates for the functionalization of biopolymers with several applications as biosensors for the determination of bioactive amine and alcohols, for bioremediation of industrial wastewater, and for greener catalysts in oxidation reactions in organic synthesis, especially used for non-phenolic compounds in combination with redox mediators in the so-called Laccase Mediator System (LMS). In this work, we describe the immobilization of Laccase from Trametes versicolor (LTv) in poly-L-lactic acid (PLLA) nanofibers and its application in LMS oxidation reactions. The PLLA-LTv catalysts were successfully produced by electrospinning of a water-in-oil emulsion with an optimized method. Different enzyme loadings (1.6, 3.2, and 5.1% w/w) were explored, and the obtained mats were thoroughly characterized. The actual amount of the enzyme in the fibers and the eventual enzyme leaching in different solvents were evaluated. Finally, the PLLA-LTv mats were successfully applied as such in the oxidation reaction of catechol, and in the LMS method with TEMPO as mediator in the oxidation of amines with the advantage of easier work-up procedures by the immobilized enzyme. However, the PLLA-LTv failed the oxidation of alcohols with respect to the free enzyme. A tentative explanation was provided.

5.
Animals (Basel) ; 12(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327131

RESUMO

Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4ß1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton's jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4ß1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.

6.
ACS Pharmacol Transl Sci ; 4(5): 1528-1542, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661072

RESUMO

Drug conjugates consisting of an antineoplastic drug and a targeting receptor ligand could be effective to overcome the heavy side effects of unselective anticancer agents. To address this need, we report here the results of a project aimed to study agonist and antagonist integrin ligands as targeting head of molecular cargoes for the selective delivery of 5-fluorouracil (5-FU) to cancer or noncancer cells. Initially, two fluorescent ß-lactam-based integrin ligands were synthesized and tested for an effective and selective internalization mediated by α4ß1 or α5ß1 integrins in Jurkat and K562 cells, respectively. No cellular uptake was observed for both fluorescent compounds in HEK293 noncancerous control cells. Afterward, three conjugates composed of the ß-lactam-based integrin ligand, suitable linkers, and 5-FU were realized. The best compound E, acting as α5ß1 integrin agonist, is able to selectively deliver 5-FU into tumor cells, successfully leading to cancer cell death.

7.
Front Neurosci ; 15: 695592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335170

RESUMO

Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA