RESUMO
Passive sampling devices (PSDs) offer key benefits for monitoring chemical water quality, but the uptake process of PSDs for hydrophilic compounds still needs to be better understood. Determining mass transfer coefficients of the water boundary layer (kw) during calibration experiments and in situ monitoring would contribute toward achieving this; it allows for combining calibration data obtained at different temperature and hydrodynamic conditions and facilitate the translation of laboratory-derived calibration data to field exposure. This study compared two kw measurement methods applied to extraction disk housings (Chemcatcher), namely, alabaster dissolution and dissipation of performance reference compounds (PRCs) from silicone. Alabaster- and PRC-based kw were measured at four flow velocities (5-40 cm s-1) and two temperatures (11 and 20 °C) in a channel system. Data were compared using a relationship based on Sherwood, Reynolds, and Schmidt numbers. Good agreement was observed between data obtained at both temperatures, and for the two methods. Data were well explained by a model for mass transfer to a flat plate under laminar flow. It was slightly adapted to provide a semi-empirical model accounting for the effects of housing design on hydrodynamics. The use of PRC-spiked silicone to obtain in situ integrative kw for Chemcatcher-type PSDs is also discussed.
Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Sulfato de Cálcio , Calibragem , Monitoramento Ambiental/métodos , Hidrodinâmica , Silicones , Poluentes Químicos da Água/químicaRESUMO
Passive samplers are key tools to sample hydrophilic micropollutants in water. Two main approaches address the influence of hydrodynamics: (1) determining site-specific sampling rate (RS) by characterizing kw, the mass transfer coefficient of the water-boundary layer (WBL), and (2) reducing WBL impact using a diffusive material to control the uptake. The first requires calibration data and the second has only been achieved using fragile diffusive material. This study assesses the transfer of hydrophilic contaminants through polytetrafluoroethylene (PTFE; 30 µm thick), a new membrane material with lower sorption than commonly used polyethersulfone (PES). Combined for the first time in a Chemcatcher-like configuration, we calibrated the modified samplers for 44 micropollutants to provide RS - kw relationships for in-situ RS determination (approach 1). Micropollutants accumulated over 2000 times more on the sorbent than on PTFE. PTFE-based RS (0.027 to 0.300 L day-1) were 2.5 higher than previously reported with PES. Membrane property measurements (porosity, tortuosity) indicated that accumulation is primarily controlled by the membrane. Extrapolation indicated that using thicker PTFE membranes (≥ 100 µm) would shift uptake control entirely to the membrane in river conditions (approach 2). This finding could enable RS prediction based on contaminants properties, thus representing a significant advancement in passive sampling.
RESUMO
When monitoring water quality with hydrophilic integrative passive sampling devices, it is crucial to use accurate sampling rates (RS) that account for exposure conditions such as hydrodynamics. This study aims at calibrating Chemcatcher-like passive samplers - styrene-divinylbenzene reverse phase sulfonate (SDB-RPS) extraction disk covered by a polyethersulfone (PES) membrane - at four water flow velocities (5 to 40 cm s-1) in a channel system. First, the four hydrodynamic conditions were characterized by measuring the mass transfer coefficients of the water boundary layer (kw) at the surface of the samplers using the alabaster dissolution method. Then, fifty-six samplers were deployed in the channels and exposed for 7 different intervals varying from 1 to 21 days. Thus, RS were determined at four different kw for 44 hydrophilic compounds, ranging from 0.015 to 0.115 L day-1. Relationships were established between kw and RS using models for mixed rate control by the membrane and the water boundary layer. The estimated parameters of those relationships are suitable for the determination of accurate RS when kw is measured in situ, for example by co-deploying silicone disks spiked with performance and reference compounds (PRC) as implemented in Part B.
RESUMO
Integrative passive sampling is particularly useful in the monitoring of hydrophilic contaminants in surface water, but the impact of hydrodynamics on contaminant uptake still needs to be better considered. In part A (Glanzmann et al., 2023), Chemcatcher-like hydrophilic samplers (i.e., SDB-RPS extraction disks covered by PES microporous membranes) were calibrated to determine the sampling rates RS of 44 hydrophilic contaminants (pesticides, pharmaceuticals, industrial products) taking into account the hydrodynamic conditions. In this study, Chemcatcher-like passive sampling devices that allowed co-deploying hydrophilic samplers and performance reference compounds (PRC)-spiked silicone disks were tested in a Swiss river with intermediate water velocities (5-50 cm s-1, 23 cm s-1 on average) during 11 consecutive 14-day periods. The PRC dissipation from silicone disks - combined with the calibration data from part A - allowed to determine in-situ RS that took into account hydrodynamic conditions. The obtained aqueous time-weighted average (TWA) concentrations were found to be robust with good concordance between duplicates (mean quotient of 1.16 between the duplicates). For most measurements (76 %), TWA concentrations showed no major difference (