RESUMO
[Figure: see text].
Assuntos
Insuficiência Cardíaca/diagnóstico por imagem , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Complexos de Coordenação/farmacocinética , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Peptídeos Cíclicos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Receptores CXCR4/metabolismoRESUMO
Introduction: Surgical interventions in mice require appropriate pain relief to ensure animal welfare and to avoid influence of pain on research findings. Carprofen is a non-steroidal anti-inflammatory drug commonly used as an analgesic for interventions inducing mild to moderate pain in laboratory rodents. Despite its frequent use, species-specific data on pharmacokinetics (PK), side effects, and potential impact on behavioral pain indicators are limited. Methods: We determined PK and tolerability profiles of carprofen in healthy male and female C57BL/6J mice (n = 42), administered at highest recommended doses via single subcutaneous (s.c.) injection (20 mg/kg) and oral self-administration (25 mg/kg/24 h) per drinking water (d.w.) for 5 days. Plasma concentrations were measured at various time points after the start of the treatment (n = 6 per time point), and side effects were evaluated using a modified Irwin test battery, hematology, and histopathology. Additionally, potential interference with cage-side behaviors commonly used for pain assessment, such as the mouse grimace scale, wheel running, burrowing, nesting, and grooming activity, was investigated. Results: Maximum plasma concentrations of 133.4 ± 11.3 µg/ml were reached 1 h after single s.c. injection with an elimination half-life of 8.52 h. Intake from d.w. resulted in a steady state within 24 h after the start of the treatment with plasma levels of around 60 µg/ml over 5 days in both sexes. The medicated water was well-accepted, and increased d.w. intake was observed in the first 24 h after exposure (p < 0.0001). The Irwin test revealed only minor influence on tested behavior and physiological functions. However, during treatment via d.w., an increase in body temperature (p < 0.0001) was observed, as well as a reduction in voluntary wheel running activity by 49-70% in male mice. Moreover, grooming behavior was slightly affected. Hematology and histopathology were without pathological findings that could be attributed to carprofen treatment. High-dose carprofen can be considered safe and of favorable PK for both administration routes assessed in healthy C57BL/6J mice of both sexes. Further efficacy evaluation of carprofen as monoanalgesic or component of multimodal post-surgical regimens is clearly encouraged; however, the impact on behavioral markers used for pain assessment should be considered in this context.
RESUMO
While neurosurgical interventions are frequently used in laboratory mice, refinement efforts to optimize analgesic management based on multimodal approaches appear to be rather limited. Therefore, we compared the efficacy and tolerability of combinations of the non-steroidal anti-inflammatory drug carprofen, a sustained-release formulation of the opioid buprenorphine, and the local anesthetic bupivacaine with carprofen monotherapy. Female and male C57BL/6J mice were subjected to isoflurane anesthesia and an intracranial electrode implant procedure. Given the multidimensional nature of postsurgical pain and distress, various physiological, behavioral, and biochemical parameters were applied for their assessment. The analysis revealed alterations in Neuro scores, home cage locomotion, body weight, nest building, mouse grimace scales, and fecal corticosterone metabolites. A composite measure scheme allowed the allocation of individual mice to severity classes. The comparison between groups failed to indicate the superiority of multimodal regimens over high-dose NSAID monotherapy. In conclusion, our findings confirmed the informative value of various parameters for assessment of pain and distress following neurosurgical procedures in mice. While all drug regimens were well tolerated in control mice, our data suggest that the total drug load should be carefully considered for perioperative management. Future studies would be of interest to assess potential synergies of drug combinations with lower doses of carprofen.
Assuntos
Anti-Inflamatórios não Esteroides , Camundongos Endogâmicos C57BL , Procedimentos Neurocirúrgicos , Manejo da Dor , Dor Pós-Operatória , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Camundongos , Masculino , Manejo da Dor/métodos , Feminino , Dor Pós-Operatória/tratamento farmacológico , Procedimentos Neurocirúrgicos/efeitos adversos , Carbazóis/administração & dosagem , Analgesia/métodos , Bupivacaína/administração & dosagem , Buprenorfina/administração & dosagem , Analgésicos Opioides/administração & dosagem , Quimioterapia CombinadaRESUMO
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration: https://osf.io/7d4qe.
RESUMO
Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload-induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 µL vs. 23.8 ± 1.7 µL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = -0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = -0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.