Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Soc Nephrol ; 29(9): 2326-2336, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976587

RESUMO

BACKGROUND: Expression of genes regulating fatty acid metabolism is reduced in tubular epithelial cells from kidneys with tubulointerstitial fibrosis (TIF), thus decreasing the energy produced by fatty acid oxidation (FAO). Acetyl-CoA carboxylase (ACC), a target for the energy-sensing AMP-activating protein kinase (AMPK), is the major controller of the rate of FAO within cells. Metformin has a well described antifibrotic effect, and increases phosphorylation of ACC by AMPK, thereby increasing FAO. METHODS: We evaluated phosphorylation of ACC in cell and mouse nephropathy models, as well as the effects of metformin administration in mice with and without mutations that reduce ACC phosphorylation. RESULTS: Reduced phosphorylation of ACC on the AMPK site Ser79 occurred in both tubular epithelial cells treated with folate to mimic cellular injury and in wild-type (WT) mice after induction of the folic acid nephropathy model. When this effect was exaggerated in mice with knock-in (KI) Ser to Ala mutations of the phosphorylation sites in ACC, lipid accumulation and fibrosis increased significantly compared with WT. The effect of ACC phosphorylation on fibrosis was confirmed in the unilateral ureteric obstruction model, which showed significantly increased lipid accumulation and fibrosis in the KI mice. Metformin use was associated with significantly reduced fibrosis and lipid accumulation in WT mice. In contrast, in the KI mice, the drug was associated with worsened fibrosis. CONCLUSIONS: These data indicate that reduced phosphorylation of ACC after renal injury contributes to the development of TIF, and that phosphorylation of ACC is required for metformin's antifibrotic action in the kidney.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Nefropatias/patologia , Metformina/farmacologia , Oxirredução/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Análise de Variância , Animais , Biópsia por Agulha , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Resistência à Insulina/fisiologia , Nefropatias/metabolismo , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/metabolismo , Camundongos , Camundongos Knockout , Análise Multivariada , Fosforilação , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real
2.
Kidney Blood Press Res ; 40(5): 509-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418861

RESUMO

BACKGROUND/AIMS: Intravascular volume expansion due to sodium retention is involved in the pathogenesis of obesity-related hypertension. Institution of high fat diet (HFD) feeding leads to an initial state of positive sodium balance due to enhanced tubular reabsorption of sodium, but which tubular sodium transporters are responsible for this remains undefined. METHODS: C57/Bl6 mice were fed control or HFD for 3 weeks. Blood pressures were recorded by tail cuff method. Sodium transporter expression and phosphorylation were determined by Western blotting. In vivo activity of NCC was determined using natriuretic responses to hydrochlorothiazide. Expression of NCC mRNA was determined using qPCR. RESULTS: At 3 weeks HFD mice had significant weight gains compared to control mice, but blood pressures were not yet elevated. There were no changes in expression or phosphorylation of the bumetanide-sensitive cotransporter, NKCC2, or in expression of subunits of the amiloride-sensitive ion channel, ENaC. However, there were significant increases in mRNA and protein expression of the thiazide-sensitive co-transporter, NCC, in kidneys from HFD mice. Consistent with this, HFD mice had increased in vivo activity of NCC. CONCLUSIONS: Increased expression of NCC promotes the sodium loading response to institution of HFD feeding before onset of hypertension.


Assuntos
Gorduras na Dieta/efeitos adversos , Hidroclorotiazida/farmacologia , Obesidade/metabolismo , Receptores de Droga/biossíntese , Simportadores de Cloreto de Sódio/biossíntese , Cloreto de Sódio na Dieta/efeitos adversos , Sódio/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/patologia , Cloreto de Sódio na Dieta/administração & dosagem
3.
Mol Membr Biol ; 31(2-3): 95-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24702155

RESUMO

The co-transporter activity of Na(+)-K(+)-2Cl(-) 1 (NKCC1) is dependent on phosphorylation. In this study we show the energy-sensing kinase AMPK inhibits NKCC1 activity. Three separate AMPK activators (AICAR, Phenformin and A-769662) inhibited NKCC1 flux in a variety of nucleated cells. Treatment with A-769662 resulted in a reduction of NKCC1(T212/T217) phosphorylation, and this was reversed by treatment with the non-selective AMPK inhibitor Compound C. AMPK dependence was confirmed by treatment of AMPK null mouse embryonic fibroblasts, where A-769662 had no effect on NKCC1 mediated transport. AMPK was found to directly phosphorylate a recombinant human-NKCC1 N-terminal fragment (1-293) with the phosphorylated site identified as S77. Mutation of Serine 77 to Alanine partially prevented the inhibitory effect of A-769662 on NKCC1 activity. In conclusion, AMPK can act to reduce NKCC1-mediated transport. While the exact mechanism is still unclear there is evidence for both a direct effect on phosphorylation of S77 and reduced phosphorylation of T212/217.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fenformin/farmacologia , Pironas/farmacologia , Ribonucleotídeos/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Alanina/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Fosforilação , Mutação Puntual , Transporte Proteico/efeitos dos fármacos , Serina/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética
4.
Am J Physiol Renal Physiol ; 307(1): F96-F106, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24808538

RESUMO

Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. When we examined Na(+) transporter expression, Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) was unchanged in whole kidney and reduced in the cortex, Na(+)-Cl(-) cotransporter (NCC) and α-epithelial Na(+) channel (ENaC) and γ-ENaC were unchanged, and ß-ENaC was reduced. Phosphorylation of NCC was unaltered. Activating phosphorylation of NKCC2 at S126 was increased 2.5-fold. Activation of STE-20/SPS1-related proline-alanine-rich protein kinase (SPAK)/oxidative stress responsive 1 kinase (OSR1) was increased in kidneys from HFD-fed mice, and enhanced phosphorylation of NKCC2 at T96/T101 was evident in the cortex. Increased activity of NKCC2 in vivo was confirmed with diuretic experiments. HFD-fed mice had reduced activating phosphorylation of AMP-activated protein kinase (AMPK) in the renal cortex. In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK(+/+) murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK(-/-) MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK(-/-) MEFs than in AMPK(+/+) MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na(+) reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
5.
Immunol Cell Biol ; 92(5): 400-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24394995

RESUMO

In humans, mutations of the intrinsic lysosomal protein SCARB2 are associated with myoclonic epilepsy, collapsing focal and segmental glomerulosclerosis, and tubular proteinuria. Mice with deficiency of Limp-2 (the murine homologue) develop tubular proteinuria but not focal and segmental glomerulosclerosis and they have a defect in macrophage function. To further elucidate the role of Limp-2 in immune function, we induced anti-glomerular basement membrane (GBM) model of crescentic glomerulonephritis in wild-type (WT) and Limp-2(-/-) littermates by intraperitoneal injections of nephrotoxic sheep serum. Renal injury and immune responses were assessed on day 14. Compared with WT, Limp-2(-/-) mice had significantly reduced crescent formation, interstitial inflammation and a trend to reduced tubulointerstitial injury. On day 1 during the heterologous phase of the disease, albuminuria was significantly increased in WT but not in Limp-2(-/-) mice. On day 14, albuminuria and renal function were similar in the two groups. There was, however, a significant reduction in the influx of glomerular macrophages and CD4(+) T cells in Limp-2(-/-) mice. Interleukin (IL)-4 and macrophage chemoattractant protein-1 (MCP-1) mRNA expression levels were significantly reduced. Despite the reduction in numbers of infiltrating cells, flow cytometry showed no difference in macrophage or T-cell numbers in the peripheral blood from untreated mice. The systemic humoral immune response, determined by glomerular mouse immunoglobulin G (IgG) deposition and mouse anti-sheep IgG subclass production, was similar in both groups. These data suggest that absence of Limp-2 reduces inflammation in experimental crescentic glomerulonephritis with decreased macrophage and T-cell infiltration in the kidney. It suggests an important role for Limp-2 in mediating the inflammatory response.


Assuntos
Antígenos CD36/deficiência , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Proteínas de Membrana Lisossomal/deficiência , Albuminúria/etiologia , Animais , Modelos Animais de Doenças , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Testes de Função Renal , Linfócitos/imunologia , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout
6.
Biomed Pharmacother ; 175: 116730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749175

RESUMO

Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.


Assuntos
Proteínas Quinases Ativadas por AMP , Injúria Renal Aguda , Cisplatino , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Substâncias Protetoras/farmacologia , Fosforilação , Compostos de Bifenilo , Pironas , Tiofenos
7.
Am J Physiol Renal Physiol ; 305(5): F679-90, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23785098

RESUMO

Salt reabsorption is the major energy-requiring process in the kidney, and AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism. Mice with targeted deletion of the ß1-subunit of AMPK (AMPK-ß1(-/-) mice) had significantly increased urinary Na(+) excretion on a normal salt diet. This was associated with reduced expression of the ß-subunit of the epithelial Na(+) channel (ENaC) and increased subapical tubular expression of kidney-specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) in the medullary thick ascending limb of Henle. AMPK-ß1(-/-) mice fed a salt-deficient diet were able to conserve Na(+), but renin secretion increased 180% compared with control mice. Cyclooxygenase-2 mRNA also increased in the kidney cortex, indicating greater signaling through the macula densa tubular salt-sensing pathway. To determine whether the increase in renin secretion was due to a change in regulation of fatty acid metabolism by AMPK, mice with a mutation of the inhibitory AMPK phosphosite in acetyl-CoA carboxylase 1 [ACC1-knockin (KI)(S79A) mice] were examined. ACC1-KI(S79A) mice on a normal salt diet had no increase in salt loss or renin secretion, and expression of NKCC2, Na(+)-Cl(-) cotransporter, and ENaC-ß were similar to those in control mice. When mice were placed on a salt-deficient diet, however, renin secretion and cortical expression of cyclooxygenase-2 mRNA increased significantly in ACC1-KI(S79A) mice compared with control mice. In summary, our data suggest that renin synthesis and secretion are regulated by AMPK and coupled to metabolism by phosphorylation of ACC1.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/metabolismo , Renina/sangue , Proteínas Quinases Ativadas por AMP/deficiência , Acetil-CoA Carboxilase/genética , Animais , Canais Epiteliais de Sódio/biossíntese , Camundongos , Fosforilação , Renina/biossíntese , Sódio/urina , Cloreto de Sódio na Dieta/administração & dosagem
8.
PLoS One ; 18(2): e0280792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757995

RESUMO

The anti-fibrotic effect of metformin has been widely demonstrated. Fibrosis in the kidney after injury is associated with reduced expression of genes involved in both fatty acid and glycolytic energy metabolism. We have previously reported that the anti-fibrotic effect of metformin requires phosphoregulation of fatty acid oxidation by AMP-activated protein kinase (AMPK). To determine whether metformin also acts via regulation of glycolysis, we mutated regulatory phosphosites in the PFKFB2 isoform of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB2), a key regulator of glycolysis in the kidney. Mice with inactivating knockin (KI) mutations of the phosphorylation sites in PFKFB2 (PFKFB2 KI mice), which reduces the ability to increase the rate of glycolysis following stimulation, were used. Metformin was administered via drinking water to mice with a unilateral ureteric obstruction (UUO) model of renal fibrosis. In the PFKFB2 KI mice treated with metformin, there was decreased fibrosis and macrophage infiltration following UUO as assessed by Western blot for fibronectin and RT-PCR for α-smooth muscle actin, collagen 3, and F4.80, and confirmed by histology. Expression of the inducible PFKFB3 isoform was increased with metformin in UUO in both WT and PFKFB2 KI mice. There was no significant difference between WT and PFKFB2 KI mice treated with metformin in the degree of fibrosis following UUO in any of the Western blot or RT-PCR parameters that were measured. These data show that inhibition of the regulation of glycolysis by PFKFB2 does not diminish the anti-fibrotic effect of metformin in a model of renal fibrosis.


Assuntos
Nefropatias , Metformina , Obstrução Ureteral , Animais , Camundongos , Modelos Animais de Doenças , Fibrose , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/genética , Nefropatias/complicações , Metformina/farmacologia , Metformina/metabolismo , Mutação , Fosforilação , Obstrução Ureteral/complicações
9.
Biomed Pharmacother ; 153: 113377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076520

RESUMO

BACKGROUND: Acute kidney injury (AKI) is accompanied by dysregulation of cellular energy metabolism and accumulation of intracellular lipid. Phosphorylation of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis and promotes fatty acid oxidation (FAO), vital for kidney tubular epithelial cells (TECs). The diabetes drug metformin is protective in models of AKI; however, it is not known whether ACC phosphorylation plays a role. METHODS: Cisplatin-induced AKI (CI-AKI) was established in ACC1/2 double knock-in (ACC1/2DKI) mice, harbouring mutations that disrupt fatty acid metabolism, and the role of metformin was studied in this model. Outcomes measured included serum biochemistry, expression of kidney injury markers such as neutrophil gelatinase-associated lipocalin (NGAL), and metabolomic analysis. FINDINGS: ACC1/2DKI mice demonstrated more severe CI-AKI than wild type (WT), as assessed by serum urea and creatinine, histological injury, and expression of NGAL and interleukin-6. Metformin protected against AKI in WT mice, shown by reduced NGAL, but this effect was absent in ACC1/2DKI mice. In cultured TECs exposed to cisplatin, metformin reduced expression of cleaved caspase-3, however, this effect was diminished in ACC1/2DKI TECs. Analysis of kidney polar metabolites found numerous differences between metformin-treated CI-AKI in ACC1/2DKI and WT mice, involving multiple pathways of amino acid, nucleoside, and energy metabolism. INTERPRETATION: Severity of CI-AKI is exacerbated by the inability to regulate metabolism via phosphorylation of ACC. ACC phosphorylation contributes to the protective effect of metformin against AKI, influencing multiple mechanisms involved in the pathogenesis of kidney injury.


Assuntos
Injúria Renal Aguda , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Animais , Cisplatino/metabolismo , Cisplatino/toxicidade , Ácidos Graxos , Lipocalina-2 , Metformina/efeitos adversos , Camundongos
10.
Sci Rep ; 10(1): 14531, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884050

RESUMO

Fatty acid oxidation is the major energy pathway used by the kidney, although glycolysis becomes more important in the low oxygen environment of the medulla. Fatty acid oxidation appears to be reduced in renal fibrosis, and drugs that reverse this improve fibrosis. Expression of glycolytic genes is more variable, but some studies have shown that inhibiting glycolysis reduces renal fibrosis. To address the role of glycolysis in renal fibrosis, we have used a genetic approach. The crucial control point in the rate of glycolysis is 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase. Phosphorylation of the kidney isoform, PFKFB2, on residues Ser468 and Ser485 stimulates glycolysis and is the most important mechanism regulating glycolysis. We generated transgenic mice with inactivating mutations of Ser468 and Ser485 in PFKFB2 (PFKFB2 KI mice). These mutations were associated with a reduced ability to increase glycolysis in primary cultures of renal tubular cells from PFKFB2 KI mice compared to WT cells. This was associated in PFKFB2 KI mice with increased renal fibrosis, which was more severe in the unilaternal ureteric obstruction (UUO) model compared with the folic acid nephropathy (FAN) model. These studies show that phosphorylation of PFKFB2 is important in limiting renal fibrosis after injury, indicating that the ability to regulate and maintain adequate glycolysis in the kidney is crucial for renal homeostasis. The changes were most marked in the UUO model, probably reflecting a greater effect on distal renal tubules and the greater importance of glycolysis in the distal nephron.


Assuntos
Fibrose/metabolismo , Fibrose/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Fosfofrutoquinase-2/metabolismo , Fosforilação/fisiologia , Animais , Western Blotting , Células Cultivadas , Fibrose/genética , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Fosfofrutoquinase-2/genética , Fosforilação/genética
11.
Biores Open Access ; 2(1): 40-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23515316

RESUMO

Mutations of the intrinsic lysosomal membrane protein SCARB2 cause action myoclonus-renal failure syndrome (AMRF syndrome), a rare disease characterized by renal and neurological manifestations. In this study, examination of Cos7 cells transfected with SCARB2 cDNA derived from two patients with AMRF syndrome showed that the resultant protein was truncated and was not incorporated into vesicular structures, as occurred with full-length SCARB2 cDNA. Mutant SCARB2 protein failed to colocalize with lysosomes and was found in the endoplasmic reticulum or the cytosol indicating a loss of function. Cultured skin fibroblast and Epstein-Barr virus-transformed lymphoblastoid B cell lines (LCLs) were created from these two patients. Despite the loss of SCARB2 function, studies with lysosomal-associated membrane protein (LAMP) 1 and LAMP2 demonstrated normal lysosomal numbers in fibroblasts and LCLs. Immunofluorescence microscopy using anti-LAMP1 and anti-LAMP2 antibodies also showed normal lysosomal structures in fibroblasts. There was no change in the morphology of fibroblasts examined by electron microscopy compared with cells from unaffected individuals. By contrast, LCLs from individuals bearing SCARB2 mutations had large intracellular vesicles that resembled autophagosomes and contained heterogeneous cellular debris. Some of the autophagosomes were seen to be extruding cellular contents into the media. Furthermore, LCLs had elevated levels of microtubule-associated protein light chain 3-II, consistent with increased autophagy. These data demonstrate that SCARB2 mutations are associated with an inability to process autophagosomes in B lymphocytes, suggesting a novel function for SCARB2 in immune function.

12.
PLoS One ; 7(1): e29887, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253816

RESUMO

AIM: Activation of the master energy-regulator AMP-activated protein kinase (AMPK) in the heart reduces the severity of ischemia-reperfusion injury (IRI) but the role of AMPK in renal IRI is not known. The aim of this study was to determine whether activation of AMPK by acute renal ischemia influences the severity of renal IRI. METHODS: AMPK expression and activation and the severity of renal IRI was studied in mice lacking the AMPK ß1 subunit and compared to wild type (WT) mice. RESULTS: Basal expression of activated AMPK, phosphorylayed at αThr¹7², was markedly reduced by 96% in AMPK-ß1⁻/⁻ mice. Acute renal ischaemia caused a 3.2-fold increase in α1-AMPK activity and a 2.5-fold increase in α2-AMPK activity (P<0.001) that was associated with an increase in AMPK phosphorylation of the AMPK-α subunit at Thr¹7² and Ser485, and increased inhibitory phosphorylation of the AMPK substrate acetyl-CoA carboxylase. After acute renal ischemia AMPK activity was reduced by 66% in AMPK-ß1⁻/⁻ mice compared with WT. There was no difference, however, in the severity of renal IRI at 24-hours between AMPK-ß1⁻/⁻ and WT mice, as measured by serum urea and creatinine and histological injury score. In the heart, macrophage migration inhibitory factor (MIF) released during IRI contributes to AMPK activation and protects from injury. In the kidney, however, no difference in AMPK activation by acute ischemia was observed between MIF⁻/⁻ and WT mice. Compared with the heart, expression of the MIF receptor CD74 was found to be reduced in the kidney. CONCLUSION: The failure of AMPK activation to influence the outcome of IRI in the kidney contrasts with what is reported in the heart. This difference might be due to a lack of effect of MIF on AMPK activation and lower CD74 expression in the kidney.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Creatinina/sangue , Ativação Enzimática , Rim/irrigação sanguínea , Rim/enzimologia , Rim/patologia , Fatores Inibidores da Migração de Macrófagos/deficiência , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Fosforilação , Traumatismo por Reperfusão/sangue , Ureia/sangue
13.
Am J Physiol Renal Physiol ; 296(4): F801-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176702

RESUMO

The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Túbulos Renais/enzimologia , Cloreto de Sódio/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Bumetanida/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Ativação Enzimática , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Camundongos , Mutação , Naftalimidas/farmacologia , Necrose , Concentração Osmolar , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/metabolismo , Serina , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA