Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 11: 1143614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035117

RESUMO

Magnesium oxide nanostructured particles (NP) were prepared using a simple solution combustion technique using different leaf extracts such as Mangifera indica (Mango - Ma), Azadirachta indica (Neem-Ne), and Carica papaya (Papaya-Pa) as surfactants. The highly crystalline phase of MgO nanostructures was confirmed by PXRD and FTIR studies for 2 h 500°C calcined samples. To analyze the characteristics of obtained material-MaNP, NeNP, and PaNP for dosimetry applications, thermoluminescence (TL) studies were carried out for Co-60 gamma rays irradiated samples in the dose range 10-50 KGy; PaNP and NeNP exhibited well-defined glow curve when compared with MaNP samples. In addition, it was observed that the TL intensity decreases, with increase in gamma dose and the glow peak temperature is shifted towards the higher temperature with the increase in heating rate. The glow peak was segregated using glow curve deconvolution and thermal cleaning method. Kinetic parameters estimated using Chen's method, trap depth (E), and frequency factor (s) were found to be 0.699, 7.408, 0.4929, and 38.71, 11.008, and 10.71 for PaNP, NeNP, and MaNP respectively. The well-resolved glow curve, good linear behavior in the dose range of 10-50, KGy, and less fading were observed in PaNP as compared with MaNP and NeNP. Further, the antibacterial activity was checked against human pathogens such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A visible zone of clearance was observed at 200 and 100 µg/mL by the PaNP and NeNP, indicating the death of colonies by the nanoparticles. Therefore, PaNP nanomaterial is a potential phosphor material for dosimetry and antibacterial application compared to NeNP and MaNP.

2.
3 Biotech ; 7(1): 57, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28444604

RESUMO

Contamination of animal and poultry feeds by Fusarium and the mycotoxin Fumonisin B1 is frequent in the feed supply chain. The present study evaluated the prevalence of fumonisin B1 producing Fusarium among irradiated and non-irradiated animal and poultry feed mixtures. Further, the efficiency of γ-rays (2.5, 5.0, 7.5, and 10.0 kGy) to minimize Fusarium growth and biosynthesis of fumonisin B1 in artificially inoculated feed was evaluated. A total of 108 feed samples were collected in which 45.37% of feed mixtures were contaminated with Fusarium species. Among the contaminated samples, the frequency levels of F. verticillioides and F. proliferatum were 42.59 and 24.07%, respectively. Out of the 98 Fusarium isolates from feed samples, 84.7% of F. verticillioides and 64.28% of F. proliferatum were positive for FUM1 set of primers. Fumonisin B1 biosynthesis by the FUM1 positive isolates in feed was confirmed by LC/MS which recorded 0.1-45 µg/g of feed. Fungal growth and viable count of Fusarium in PDA medium and feed decreased with increasing irradiation dosage. Interestingly, fumonisin content was 11 µg/g of feed in 2.5 kGy irradiated sample as compared to 5 µg/g of feed in non-irradiated control. Ionizing radiation at 7.5 kGy was found lethal for fungal growth and fumonisin production. Our findings suggest that γ-radiation above 7.5 kGy effectively prevented fungal growth in feed mixtures and minimized the exposure of animal and human life to the potential risk of mycotoxin. Also it is necessary to maintain proper storage system for feeds until consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA