Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3152-3158, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37015348

RESUMO

Metalenses with two foci in the longitudinal or transverse direction, called bifocal or dual-focus metalenses, are promising building blocks in tomography techniques, data storage, and optical tweezers. For practical applications, relative movement between the beam and specimen is required, and beam scanning is highly desirable for high-speed operation without vibration. However, dual-focus metalenses employ a hyperbolic phase that experiences off-axis aberrations, which is not suitable for beam scanning. Here, we demonstrated a scannable dual-focus metalens by employing a new phase called "hybrid phase". The hybrid phase consists of a hyperbolic phase inside and a quadratic phase outside to reduce off-axis aberrations while maintaining a high numerical aperture. We show that the two foci of the scannable dual-focus metalens move together without severe distortion for incident angles of up to 2.5°. Our design easily extends to the case of multifocusing, which is essential for various applications ranging from imaging to manipulation.

2.
Light Sci Appl ; 13(1): 187, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134518

RESUMO

Shack-Hartmann wavefront sensors measure the local slopes of an incoming wavefront based on the displacement of focal spots created by a lenslet array, serving as key components for adaptive optics for astronomical and biomedical imaging. Traditionally, the challenges in increasing the density and the curvature of the lenslet have limited the use of such wavefront sensors in characterizing slowly varying wavefront structures. Here, we develop a metasurface-enhanced Shack-Hartmann wavefront sensor (meta SHWFS) to break this limit, considering the interplay between the lenslet parameters and the performance of SHWFS. We experimentally validate the meta SHWFS with a sampling density of 5963 per mm2 and a maximum acceptance angle of 8° which outperforms the traditional SFWFS by an order of magnitude. Furthermore, to the best of our knowledge, we demonstrate the first use of a wavefront sensing scheme in single-shot phase imaging of highly complex patterns, including biological tissue patterns. The proposed approach opens up new opportunities in incorporating exceptional light manipulation capabilities of the metasurface platform in complex wavefront characterization.

3.
Sci Rep ; 7: 44167, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272445

RESUMO

As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA