Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 298(10): 102325, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926710

RESUMO

Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed 'deep', since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, 'proximal' SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.


Assuntos
Agonistas de Receptores de Canabinoides , Neuritos , Crescimento Neuronal , Proteômica , Receptor CB1 de Canabinoide , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Transdução de Sinais , Receptor CB1 de Canabinoide/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Humanos
2.
J Virol ; 96(2): e0106321, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669512

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Assuntos
COVID-19/imunologia , Células-Tronco Pluripotentes Induzidas , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia
3.
Phytother Res ; 27(9): 1381-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23165939

RESUMO

Allergic asthma is associated with Th2-mediated inflammation. Several flavonoids were isolated from Glycyrrhiza uralensis, one of the herbs in the anti-asthma herbal medicine intervention. The aim of this investigation was to determine whether Glycyrrhiza uralensis flavonoids have inhibitory effects on memory Th2 responses in vitro and antigen-induced Th2 inflammation in vivo. The effects of three Glycyrrhiza uralensis flavonoids on effector memory Th2 cells, D10.G4.1 (D10 cells), were determined by measuring Th2 cytokine production. Isoliquiritigenin, 7, 4'-dihydroxyflavone (7, 4'-DHF) and liquiritigenin significantly suppressed IL-4 and IL-5 production in a dose-dependent manner, 7, 4'-DHF being most potent. It was also evaluated for effects on D10 cell proliferation, GATA-3 expression and IL-4 mRNA expression, which were suppressed, with no loss of cell viability. Chronic treatment with 7, 4'-DHF in a murine model of allergic asthma not only significantly reduced eosinophilic pulmonary inflammation, serum IgE levels, IL-4 and IL-13 levels, but also increased IFN-γ production in lung cell cultures in response to antigen stimulation.


Assuntos
Asma/tratamento farmacológico , Flavonoides/farmacologia , Glycyrrhiza uralensis/química , Células Th2/efeitos dos fármacos , Animais , Asma/imunologia , Linhagem Celular , Chalconas/farmacologia , Modelos Animais de Doenças , Feminino , Flavanonas/farmacologia , Fator de Transcrição GATA3/metabolismo , Humanos , Memória Imunológica/efeitos dos fármacos , Interferon gama/imunologia , Interleucina-4 , Interleucina-5/imunologia , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Plantas Medicinais/química , Células Th2/imunologia
4.
Br J Pharmacol ; 180(9): 1197-1209, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470846

RESUMO

BACKGROUND AND PURPOSE: In recent decades, a focus on the most critical and fundamental concepts has proven highly advantageous to students and educators in many science disciplines. Pharmacology, unlike microbiology, biochemistry, or physiology, lacks a consensus list of such core concepts. EXPERIMENTAL APPROACH: We sought to develop a research-based, globally relevant list of core concepts that all students completing a foundational pharmacology course should master. This two-part project consisted of exploratory and refinement phases. The exploratory phase involved empirical data mining of the introductory sections of five key textbooks, in parallel with an online survey of over 200 pharmacology educators from 17 countries across six continents. The refinement phase involved three Delphi rounds involving 24 experts from 15 countries across six continents. KEY RESULTS: The exploratory phase resulted in a consolidated list of 74 candidate core concepts. In the refinement phase, the expert group produced a consensus list of 25 core concepts of pharmacology. CONCLUSION AND IMPLICATIONS: This list will allow pharmacology educators everywhere to focus their efforts on the conceptual knowledge perceived to matter most by experts within the discipline. Next steps for this project include defining and unpacking each core concept and developing resources to help pharmacology educators globally teach and assess these concepts within their educational contexts.

5.
Sci Data ; 9(1): 18, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058449

RESUMO

Drug Toxicity Signature Generation Center (DToxS) at the Icahn School of Medicine at Mount Sinai is one of the centers for the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Its key aim is to generate proteomic and transcriptomic signatures that can predict cardiotoxic adverse effects of kinase inhibitors approved by the Food and Drug Administration. Towards this goal, high throughput shotgun proteomics experiments (308 cell line/drug combinations +64 control lysates) have been conducted. Using computational network analyses, these proteomic data can be integrated with transcriptomic signatures, generated in tandem, to identify cellular signatures of cardiotoxicity that may predict kinase inhibitor-induced toxicity and enable possible mitigation. Both raw and processed proteomics data have passed several quality control steps and been made publicly available on the PRIDE database. This broad protein kinase inhibitor-stimulated human cardiomyocyte proteomic data and signature set is valuable for prediction of drug toxicities.


Assuntos
Antineoplásicos , Proteômica , Antineoplásicos/farmacologia , Cardiotoxicidade , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Transcriptoma
6.
Stem Cell Reports ; 16(12): 3036-3049, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34739849

RESUMO

A library of well-characterized human induced pluripotent stem cell (hiPSC) lines from clinically healthy human subjects could serve as a useful resource of normal controls for in vitro human development, disease modeling, genotype-phenotype association studies, and drug response evaluation. We report generation and extensive characterization of a gender-balanced, racially/ethnically diverse library of hiPSC lines from 40 clinically healthy human individuals who range in age from 22 to 61 years. The hiPSCs match the karyotype and short tandem repeat identities of their parental fibroblasts, and have a transcription profile characteristic of pluripotent stem cells. We provide whole-genome sequencing data for one hiPSC clone from each individual, genomic ancestry determination, and analysis of mendelian disease genes and risks. We document similar transcriptomic profiles, single-cell RNA-sequencing-derived cell clusters, and physiology of cardiomyocytes differentiated from multiple independent hiPSC lines. This extensive characterization makes this hiPSC library a valuable resource for many studies on human biology.


Assuntos
Saúde , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Sinalização do Cálcio , Diferenciação Celular , Linhagem Celular , Células Clonais , Etnicidade , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Risco , Adulto Jovem
7.
Phytother Res ; 24(7): 1047-55, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19998324

RESUMO

Allergic asthma is a chronic and progressive inflammatory disease for which there is no satisfactory treatment. Studies reported tolerability and efficacy of an anti-asthma herbal medicine intervention (ASHMI) for asthma patients, developed from traditional Chinese medicine. To investigate the pharmacological actions of ASHMI on early- and late-phase airway responses (EAR and LAR), Ovalbumin (OVA)-sensitized mice received 6 weeks of ASHMI treatment beginning 24 h following the first intratracheal OVA challenge. EAR were determined 30 min following the fourth challenge and LAR 48 h following the last challenge. ASHMI effects on cytokine secretion, murine tracheal ring contraction and human bronchial smooth muscle cell prostaglandin (PG) production were also determined.ASHMI abolished EAR, which was associated with significantly reduced histamine, leukotriene C4, and OVA-specific IgE levels, as well as LAR, which was associated with significantly reduced bronchoalveolar lavage fluid (BALF) eosinophils, decreased airway remodeling, and lower Th2 cytokine levels in BALF and splenocyte cultures. Furthermore, ASHMI inhibited contraction of murine tracheal rings and increased production of the potent smooth muscle relaxer PGI(2). ASHMI abrogation of allergic airway responses is associated with broad effects on asthma pathological mechanisms.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Remodelação das Vias Aéreas , Animais , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Histamina/sangue , Humanos , Imunoglobulina E/sangue , Técnicas In Vitro , Leucotrieno C4/sangue , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Ovalbumina/farmacologia , Prostaglandinas/metabolismo , Traqueia/efeitos dos fármacos
8.
J Allergy Clin Immunol ; 123(2): 443-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19203662

RESUMO

BACKGROUND: Food allergy is a serious and sometimes fatal condition for which there is no cure. We previously reported that Food Allergy Herbal Formula (FAHF)-2) protected peanut-allergic mice against anaphylactic reactions as long as 4 weeks posttherapy. This formula is now in clinical trials in the United States. OBJECTIVE: We sought to determine whether FAHF-2-mediated protection could be extended long-term and explored the mechanisms underlying its persistent immunomodulatory effects. METHODS: Peanut-allergic mice received FAHF-2 daily orally by gavage for 7 weeks, and then received 7 oral peanut challenges at intervals of 4 to 10 weeks over a period of 36 weeks. For mechanistic studies, some mice received CD4(+) or CD8(+) T-cell-depleting antibodies or IFN-gamma-neutralizing antibodies. Anaphylactic symptoms, body temperatures, and plasma histamine levels were recorded after each challenge, and peanut-specific immunoglobulin levels and cytokine profiles of splenocytes, mesenteric lymph node cells, and purified CD4(+) and CD8(+) T cells were determined. RESULTS: Food Allergy Herbal Formula-2 treatment protected mice from anaphylaxis for more than 36 weeks after discontinuing treatment. Peanut-specific IgE levels were reduced as much as 50%, whereas IgG(2a) levels were increased as much as 60%, and these effects persisted over time. T(H)2 cytokine production by CD4(+) T cells from FAHF-2-treated mice was reduced as much as 75%, whereas CD8(+) T-cell IFN-gamma production was markedly increased by as much as 85% at the final challenge. Neutralization of INF-gamma and depletion of CD8(+) T cells markedly attenuated FAHF-2 efficacy. CONCLUSIONS: Food Allergy Herbal Formula-2 provides long-term protection from anaphylaxis by inducing a beneficial shift in allergen-specific immune responses mediated largely by elevated CD8(+) T-cell IFN-gamma production.


Assuntos
Anafilaxia/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Hipersensibilidade a Amendoim/prevenção & controle , Extratos Vegetais/uso terapêutico , Alérgenos/administração & dosagem , Alérgenos/imunologia , Alérgenos/farmacologia , Anafilaxia/imunologia , Animais , Arachis/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Histamina/sangue , Imunoglobulina E/sangue , Interferon gama/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C3H , Hipersensibilidade a Amendoim/imunologia , Extratos Vegetais/farmacologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo
9.
Nat Commun ; 11(1): 4809, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968055

RESUMO

Kinase inhibitors (KIs) represent an important class of anti-cancer drugs. Although cardiotoxicity is a serious adverse event associated with several KIs, the reasons remain poorly understood, and its prediction remains challenging. We obtain transcriptional profiles of human heart-derived primary cardiomyocyte like cell lines treated with a panel of 26 FDA-approved KIs and classify their effects on subcellular pathways and processes. Individual cardiotoxicity patient reports for these KIs, obtained from the FDA Adverse Event Reporting System, are used to compute relative risk scores. These are then combined with the cell line-derived transcriptomic datasets through elastic net regression analysis to identify a gene signature that can predict risk of cardiotoxicity. We also identify relationships between cardiotoxicity risk and structural/binding profiles of individual KIs. We conclude that acute transcriptomic changes in cell-based assays combined with drug substructures are predictive of KI-induced cardiotoxicity risk, and that they can be informative for future drug discovery.


Assuntos
Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Transcriptoma , Antineoplásicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Linhagem Celular , Relação Dose-Resposta a Droga , Aprovação de Drogas , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Análise de Regressão , Medição de Risco , Fatores de Risco , Alinhamento de Sequência , Estados Unidos , United States Food and Drug Administration
10.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200140

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrate cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with SARS-CoV-2 in the presence of interleukins, with clinical findings, to investigate plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes, from healthy human subjects, with SARS-CoV-2 in the absence and presence of interleukins. We find that interleukin treatment and infection results in disorganization of myofibrils, extracellular release of troponin-I, and reduced and erratic beating. Although interleukins do not increase the extent, they increase the severity of viral infection of cardiomyocytes resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health system show that a significant portion of COVID-19 patients without prior history of heart disease, have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection can underlie the heart disease in COVID-19 patients.

11.
Mol Oncol ; 13(8): 1725-1743, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116490

RESUMO

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA-approved drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six-gene signatures for allopurinol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 was verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient-derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.


Assuntos
Alopurinol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Análise de Sistemas , Alopurinol/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Phytother Res ; 22(5): 651-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18389474

RESUMO

It was previously shown that a Chinese herbal formula, Food Allergy Herbal Formula 2 (FAHF-2) composed of nine herbs, blocked peanut-induced anaphylaxis in a murine model. The current study was designed to investigate the pharmacological actions of individual herbs comprising FAHF-2 on peanut-induced anaphylactic reactions in a murine model of peanut allergy and to determine if all nine herbs are necessary to prevent an anaphylactic reaction, or if a simplified formula containing fewer herbs would be equally effective. Some individual herbs reduced peanut-induced anaphylactic symptoms but no single herb offered full protection from anaphylactic symptoms equivalent to FAHF-2. The herbs had highly variable effects on histamine release, as well as peanut-specific serum IgE and IgG2a levels. The herbs also had variable effects on IL-4, IL-5 and IFN-gamma levels. A simplified formula comprising the most efficacious tested individual herbs showed only partial efficacy and was not able to reproduce comparably the effects of FAHF-2, suggesting that component herbs of FAHF-2 may work synergistically to produce the curative therapeutic effects produced by the whole formula, which appears to be the best option for future clinical trials.


Assuntos
Hipersensibilidade a Amendoim/tratamento farmacológico , Hipersensibilidade a Amendoim/imunologia , Extratos Vegetais/farmacologia , Anafilaxia/sangue , Anafilaxia/tratamento farmacológico , Anafilaxia/imunologia , Animais , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/sangue , Interferon gama/imunologia , Interleucina-4/sangue , Interleucina-4/imunologia , Interleucina-5/sangue , Interleucina-5/imunologia , Medicina Tradicional Chinesa/métodos , Camundongos , Hipersensibilidade a Amendoim/sangue
13.
Essays Biochem ; 62(4): 487-500, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30287586

RESUMO

Systems biology is an integrative discipline connecting the molecular components within a single biological scale and also among different scales (e.g. cells, tissues and organ systems) to physiological functions and organismal phenotypes through quantitative reasoning, computational models and high-throughput experimental technologies. Systems biology uses a wide range of quantitative experimental and computational methodologies to decode information flow from genes, proteins and other subcellular components of signaling, regulatory and functional pathways to control cell, tissue, organ and organismal level functions. The computational methods used in systems biology provide systems-level insights to understand interactions and dynamics at various scales, within cells, tissues, organs and organisms. In recent years, the systems biology framework has enabled research in quantitative and systems pharmacology and precision medicine for complex diseases. Here, we present a brief overview of current experimental and computational methods used in systems biology.


Assuntos
Biologia de Sistemas/métodos , Inteligência Artificial , Redes Reguladoras de Genes , Ensaios de Triagem em Larga Escala , Modelos Biológicos
14.
Mt Sinai J Med ; 74(1): 27-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17516560

RESUMO

The global relationship between drugs that are approved for therapeutic use and the human genome is not known. We employed graph-theory methods to analyze the Federal Food and Drug Administration (FDA) approved drugs and their known molecular targets. We used the FDA Approved Drug Products with Therapeutic Equivalence Evaluations 26(th) Edition Electronic Orange Book (EOB) to identify all FDA approved drugs and their active ingredients. We then connected the list of active ingredients extracted from the EOB to those known human protein targets included in the DrugBank database and constructed a bipartite network. We computed network statistics and conducted Gene Ontology analysis on the drug targets and drug categories. We find that drug to drug-target relationship in the bipartite network is scale-free. Several classes of proteins in the human genome appear to be better targets for drugs since they appear to be selectively enriched as drug targets for the currently FDA approved drugs. These initial observations allow for development of an integrated research methodology to identify general principles of the drug discovery process.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Aprovação de Drogas , United States Food and Drug Administration , Humanos , Biologia de Sistemas , Estados Unidos
16.
Int Immunopharmacol ; 27(2): 224-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26004313

RESUMO

Asthma is a heterogeneous airway inflammatory disease, which is associated with Th2 cytokine-driven inflammation and non-Th2, TNF-α mediated inflammation. Unlike Th2 mediated inflammation, TNF-α mediated asthma inflammation is generally insensitive to inhaled corticosteroids (ICS). ASHMITM, aqueous extract of three medicinal herbs-Ganoderma lucidum (G. lucidum), Sophora flavescens Ait (S. flavescens) and Glycyrrhiza uralensis Fischer (G. uralensis), showed a high safety profile and was clinically beneficial in asthma patients. It also suppresses both Th2 and TNF-α associated inflammation in murine asthma models. We previously determined that G. uralensis flavonoids are the key active compounds responsible for ASHMITM suppression of Th2 mediated inflammation. Until now, there are limited studies on anti-TNF-α compounds presented in ASHMITM. The objective of this study was to isolate and identify TNF-α inhibitory compounds in ASHMITM. Here we report that G. lucidum, but not the other two herbal extracts, S. flavescens or G. uralensis inhibited TNF-α production by murine macrophages; and that the methylene chloride (MC)-triterpenoid-enriched fraction, but not the polysaccharide-enriched fraction, contained the inhibitory compounds. Of the 15 triterpenoids isolated from the MC fraction, only ganoderic acid C1 (GAC1) significantly reduced TNF-α production by murine macrophages (RAW 264.7 cells) and peripheral blood mononuclear cells (PBMCs) from asthma patients. Inhibition was associated with down-regulation of NF-κB expression, and partial suppression of MAPK and AP-1 signaling pathways. Ganoderic acid C1 may have potential for treating TNF-α mediated inflammation in asthma and other inflammatory diseases.


Assuntos
Antiasmáticos/farmacologia , Medicamentos de Ervas Chinesas/química , Reishi/química , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Asma/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Glycyrrhiza uralensis/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Sophora/química , Fator de Transcrição AP-1/metabolismo , Triterpenos/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo
17.
J Integr Med ; 11(3): 195-205, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23743163

RESUMO

OBJECTIVE: Anti-asthma herbal medicine intervention (ASHMI(TM)), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI(TM) exhibited synergy. METHODS: Effects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters. RESULTS: Individual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy. CONCLUSION: By comparing the interaction index values, we find that constituents in ASHMI(TM) synergistically inhibited eotaxin-1 production as well as Th2 cytokine production.


Assuntos
Asma/tratamento farmacológico , Asma/metabolismo , Quimiocina CCL11/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibroblastos/efeitos dos fármacos , Interleucina-4/metabolismo , Interleucina-5/imunologia , Células Th2/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/análise , Fibroblastos/metabolismo , Humanos , Interleucina-5/genética , Camundongos , Plantas Medicinais/química , Células Th2/efeitos dos fármacos
18.
Phytochemistry ; 95: 259-267, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23993294

RESUMO

Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that S. flavescens, but not G. lucidum or G. uralensis aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of ß2-adrenoceptors.


Assuntos
Asma/fisiopatologia , Flavonoides/farmacologia , Glucosídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Sophora/química , Traqueia/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ganoderma , Glycyrrhiza , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia
19.
Sci Transl Med ; 5(206): 206ra140, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107779

RESUMO

Drugs are designed for therapy, but medication-related adverse events are common, and risk/benefit analysis is critical for determining clinical use. Rosiglitazone, an efficacious antidiabetic drug, is associated with increased myocardial infarctions (MIs), thus limiting its usage. Because diabetic patients are often prescribed multiple drugs, we searched for usage of a second drug ("drug B") in the Food and Drug Administration's Adverse Event Reporting System (FAERS) that could mitigate the risk of rosiglitazone ("drug A")-associated MI. In FAERS, rosiglitazone usage is associated with increased occurrence of MI, but its combination with exenatide significantly reduces rosiglitazone-associated MI. Clinical data from the Mount Sinai Data Warehouse support the observations from FAERS. Analysis for confounding factors using logistic regression showed that they were not responsible for the observed effect. Using cell biological networks, we predicted that the mitigating effect of exenatide on rosiglitazone-associated MI could occur through clotting regulation. Data we obtained from the db/db mouse model agreed with the network prediction. To determine whether polypharmacology could generally be a basis for adverse event mitigation, we analyzed the FAERS database for other drug combinations wherein drug B reduced serious adverse events reported with drug A usage such as anaphylactic shock and suicidality. This analysis revealed 19,133 combinations that could be further studied. We conclude that this type of crowdsourced approach of using databases like FAERS can help to identify drugs that could potentially be repurposed for mitigation of serious adverse events.


Assuntos
Combinação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Biologia de Sistemas , Sistemas de Notificação de Reações Adversas a Medicamentos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Fatores de Confusão Epidemiológicos , Bases de Dados como Assunto , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Exenatida , Testes de Função Cardíaca , Humanos , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/fisiopatologia , Peptídeos/efeitos adversos , Peptídeos/uso terapêutico , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Rosiglitazona , Tiazolidinedionas/efeitos adversos , Tiazolidinedionas/uso terapêutico , Tromboelastografia , Ultrassonografia , Estados Unidos , United States Food and Drug Administration , Peçonhas/efeitos adversos , Peçonhas/uso terapêutico
20.
J Agric Food Chem ; 57(3): 820-5, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19132888

RESUMO

Glycyrrhiza uralensis (Gan-Cao), commonly called "licorice", is one of the most commonly used herbs in traditional Chinese medicine (TCM). In the United States, licorice products are most often consumed as flavoring and sweetening agents in food products. The licorice triterpenoid glycyrrhizin has several biological activities, including anti-inflammatory activity. Other potential anti-inflammatory constituents in G. uralensis have not been fully investigated. Airway eosinophilic inflammation is a major feature of allergic asthma. Eotaxin-1 (eotaxin) is involved in the recruitment of eosinophils to sites of antigen-induced inflammation in asthmatic airways. Because human lung fibroblasts are the major source of eotaxin, inhibition of eosinophil recruitment by suppression of fibroblast eotaxin production is a potentially valuable approach for the pharmacological intervention in asthma. A systematic bioassay-guided purification of G. uralensis yielded five flavonoids: liquiritin, liquiritigenin, isoliquiritigenin, 7,4'-dihydroxyflavone, and isoononin. The structures of the compounds were established by (1)H and (13)C nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) studies. The potential ability of these isolated pure compounds and glycyrrhizin to inhibit secretion of eotaxin-1 by human fetal lung fibroblasts (HFL-1) was tested. Liquiritigenin, isoliquiritigenin, and 7,4'-dihydroxyflavone were more effective than liquiritin, isoononin, and glycyrrhizin in suppressing eotaxin secretion. A concentration-response study showed the IC(50) concentrations of liquiritigenin, isoliquiritigenin, and 7,4'-dihydroxyflavone were 4.2, 0.92, and 0.21 microg/mL, respectively, demonstrating that Glycyrrhiza flavonoids inhibit eotaxin-1 secretion in vitro.


Assuntos
Quimiocina CCL11/metabolismo , Fibroblastos/metabolismo , Flavonoides/farmacologia , Glycyrrhiza/química , Quimiocina CCL11/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Feto , Fibroblastos/efeitos dos fármacos , Flavonoides/análise , Flavonoides/química , Ácido Glicirrízico/farmacologia , Humanos , Pulmão , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA