Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Epilepsia ; 57(7): 1027-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270488

RESUMO

On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care.


Assuntos
Encefalopatias/genética , Epilepsia/etiologia , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Simbiose/genética , Animais , Anticonvulsivantes/uso terapêutico , Encefalopatias/complicações , Encefalopatias/tratamento farmacológico , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsia/tratamento farmacológico , Humanos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Fenótipo
2.
Proc Natl Acad Sci U S A ; 109(45): 18577-82, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23090990

RESUMO

Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)ß1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)ß1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)ß1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)ß1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)ß1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)ß1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ativação do Canal Iônico , Cinética , Camundongos , Modelos Moleculares , Células PC12 , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Xenopus
3.
J Neurosci ; 33(41): 16310-22, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107962

RESUMO

The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.


Assuntos
Anestésicos Gerais/farmacologia , Nível de Alerta/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Superfamília Shaker de Canais de Potássio/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Desflurano , Núcleos Intralaminares do Tálamo/metabolismo , Isoflurano/análogos & derivados , Isoflurano/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Éteres Metílicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sevoflurano , Superfamília Shaker de Canais de Potássio/metabolismo , Compostos Orgânicos Voláteis/farmacologia
4.
Neurobiol Dis ; 68: 16-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704313

RESUMO

SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.


Assuntos
Hipocampo/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Convulsões/metabolismo , Convulsões/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Desempenho Psicomotor , Tempo de Reação/genética , Tempo de Reação/fisiologia , Convulsões/etiologia , Convulsões/genética
5.
J Biol Chem ; 286(18): 15781-8, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454658

RESUMO

Scorpion ß-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant ß-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion ß-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion ß-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.


Assuntos
Blattellidae/metabolismo , Proteínas de Insetos/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Canais de Sódio/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Processamento Alternativo/fisiologia , Substituição de Aminoácidos , Animais , Blattellidae/química , Blattellidae/genética , Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Venenos de Escorpião/química , Escorpiões/química , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
6.
J Biol Chem ; 285(12): 9077-89, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20089854

RESUMO

The Na(v)1.2 and Na(v)1.3 voltage-gated sodium channel isoforms demonstrate distinct differences in their kinetics and voltage dependence of fast inactivation when expressed in Xenopus oocytes. Co-expression of the auxiliary beta1 subunit accelerated inactivation of both the Na(v)1.2 and Na(v)1.3 isoforms, but it did not eliminate the differences, demonstrating that this property is inherent in the alpha subunit. By constructing chimeric channels between Na(v)1.2 and Na(v)1.3, we demonstrate that the carboxyl terminus is responsible for the differences. The Na(v)1.2 carboxyl terminus caused faster inactivation in the Na(v)1.3 backbone, and the Na(v)1.3 carboxyl terminus caused slower inactivation in the Na(v)1.2 channel. Through analysis of truncated channels, we identified a homologous 60-amino acid region within the carboxyl terminus of the Na(v)1.2 and the Na(v)1.3 channels that is responsible for this modulation of fast inactivation. Site-directed replacement of Na(v)1.3 lysine 1826 in this region to its Na(v)1.2 analogue glutamic acid 1880 (K1826E) shifted the voltage dependence of inactivation toward that of Na(v)1.2. The K1826E mutation also accelerated the inactivation kinetics to a level comparable with that of Na(v)1.2. The reverse Na(v)1.2 E1880K mutation exhibited much slower inactivation kinetics and depolarized inactivation voltage dependence. A complementary mutation located within the inactivation linker of Na(v)1.3 (K1453E) caused inactivation changes mirroring those caused by the K1826E mutation in Na(v)1.3. Therefore, we have identified a homologous carboxyl-terminal residue that regulates the kinetics and voltage dependence of fast inactivation in sodium channels, possibly via a charge-dependent interaction with the inactivation linker.


Assuntos
Oócitos/metabolismo , Canais de Sódio/química , Sequência de Aminoácidos , Animais , Biofísica/métodos , Eletrofisiologia/métodos , Feminino , Cinética , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.3 , Proteínas do Tecido Nervoso/química , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ratos , Xenopus laevis
7.
J Biol Chem ; 285(13): 9823-9834, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20100831

RESUMO

Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),(7) severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1a(RH/RH) mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1a(RH/+) heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1a(RH/+) and Scn1a(RH/RH) mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.


Assuntos
Regulação da Expressão Gênica , Interneurônios/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Convulsões/genética
8.
Neuropsychopharmacology ; 46(11): 2011-2020, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33658654

RESUMO

Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.


Assuntos
Transtorno Autístico , Epilepsia , Animais , Humanos , Camundongos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios , Convulsões/genética
9.
Epilepsia ; 51(9): 1650-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20831750

RESUMO

Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsia Generalizada/genética , Proteínas do Tecido Nervoso/genética , Convulsões Febris/genética , Canais de Sódio/genética , Animais , Canalopatias/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mosaicismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1 , Ratos
10.
Neurobiol Dis ; 35(1): 91-102, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19409490

RESUMO

Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability.


Assuntos
Cromossomos Artificiais Bacterianos/fisiologia , Modelos Animais de Doenças , Epilepsia Generalizada/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Convulsões Febris/genética , Canais de Sódio/genética , Animais , Animais Recém-Nascidos , Arginina/genética , Fenômenos Biofísicos , Células Cultivadas , Relação Dose-Resposta a Droga , Eletroencefalografia/métodos , Eletromiografia/métodos , Epilepsia Generalizada/induzido quimicamente , Epilepsia Generalizada/complicações , Epilepsia Generalizada/patologia , Histidina/genética , Ácido Caínico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Neurônios/fisiologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Convulsões Febris/induzido quimicamente , Convulsões Febris/complicações , Convulsões Febris/patologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
11.
Eur J Pharmacol ; 844: 241-252, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30571955

RESUMO

A series of amino-2-cyclohexyl ester derivatives were studied for their ion channel blocking and antiarrhythmic actions in the rat and a structure-activity analysis was conducted. The compounds are similar in chemical structure except for ionizable amine groups (pK values 6.1-8.9) and the positional arrangements of aromatic naphthyl moieties. Ventricular arrhythmias were produced in rats by coronary-artery occlusion or electrical stimulation. The electrophysiological effects of these compounds on rat heart sodium channels (Nav1.5) expressed in Xenopus laevis oocytes and transient outward potassium currents (Kv4.3) from isolated rat ventricular myocytes were examined. The compounds reduced the incidence of ischemia-related arrhythmias and increased current threshold for induction of ventricular fibrillo-flutter (VFt) dose-dependently. As pK increased compounds showed a diminished effectiveness against ischemia-induced arrhythmias, and were less selective for ischemia- versus electrically-induced arrhythmias. Where tested, compounds produced a concentration-dependent tonic block of Nav1.5 channels. An increased potency for inhibition of Nav1.5 occurred when the external pH (pHo) was reduced to 6.5. Some compounds inhibited Kv4.3 in a pH-independent manner. Overall, the differences in antiarrhythmic and ion channel blocking properties in this series of compounds can be explained by differences in chemical structure. Antiarrhythmic activity for the amino-2-cyclohexyl ester derivatives is likely a function of mixed ion channel blockade in ischemic myocardium. These studies show that drug inhibition of Nav1.5 occurred at lower concentrations than Kv4.3 and was more sensitive to changes in the ionizable amine groups rather than on positional arrangements of the naphthyl constituents. These results offer insight into antiarrhythmic mechanisms of drug-ion channel interactions.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Sódio/uso terapêutico , Animais , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Ésteres/química , Ésteres/farmacologia , Ésteres/uso terapêutico , Coração/efeitos dos fármacos , Coração/fisiologia , Masculino , Isquemia Miocárdica/complicações , Oócitos/fisiologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/fisiologia , Relação Estrutura-Atividade , Xenopus laevis
12.
Neuron ; 42(1): 101-12, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15066268

RESUMO

BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Anestésicos Locais/farmacologia , Animais , Bário/farmacologia , Cádmio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Cátions/farmacologia , Cobalto/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Evolução Molecular , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Ácido Niflúmico/farmacologia , Oócitos , Técnicas de Patch-Clamp/métodos , Filogenia , Mutação Puntual , Potássio/farmacologia , Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 1 da Família 12 de Carreador de Soluto , Tetrodotoxina/farmacologia , Xenopus
13.
J Physiol ; 586(16): 3917-26, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18565993

RESUMO

Na(v)1.2 and Na(v)1.6 are two voltage-gated sodium channel isoforms found in adult CNS neurons. These isoforms differ in their electrophysiological properties, even though the major regions that are known to be involved in channel activation and inactivation are conserved between them. To determine if the terminal domains of these channels contributed to their activation and fast inactivation differences, we constructed chimeras between the two isoforms and characterized their electrophysiological properties. Exchanging the N-terminal 205 amino acids of Na(v)1.6 and the corresponding 202 amino acids of Na(v)1.2 completely swapped the V_(1)/(2) of steady-state activation between the Na(v)1.2 and Na(v)1.6 channels in an isoform-specific manner. Exchanging the C-terminal 436 amino acids of Na(v)1.6 and the corresponding region of Na(v)1.2 altered the voltage dependence and kinetics of steady-state inactivation, but the changes did not reflect a direct transfer of inactivation properties between the two isoforms. Finally, the N- and C-terminal domains from Na(v)1.6 demonstrated functional cooperation. These results suggest that the terminal sequences of the sodium channel are important for isoform-specific differences between the channels.


Assuntos
Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Mutagênese Sítio-Dirigida , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/genética , Canais de Sódio/genética , Relação Estrutura-Atividade , Xenopus laevis
14.
Gene ; 408(1-2): 133-45, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18077107

RESUMO

We investigated the role of the 3' non-coding region of a mouse voltage-gated potassium channel mRNA (mKv1.4 mRNA) in post-transcriptional regulation of gene expression. In contrast to an earlier report from studies carried out in Xenopus oocytes, we found that 3' non-coding region sequences of mKv1.4 mRNAs did not significantly affect expression of a heterologous reporter RNA in vitro or in mammalian cells/cell lines. Instead, our data revealed a possible role for alternative polyadenylation mediated by distinct determinants approximately 0.2 kb and approximately 1.2 kb downstream of the Kv1.4 coding region. The use of the downstream polyadenylation signal correlated with the synthesis of a larger Kv1.4 mRNA isoform that was more abundantly expressed than the smaller mRNA species, whose expression was regulated by the upstream polyadenylation signal. Our results suggest that the relative strengths of the polyadenylation signals are major determinants of overall Kv1.4 mRNA abundance in cells.


Assuntos
Regiões 3' não Traduzidas/química , Canal de Potássio Kv1.4/genética , Poliadenilação , Animais , Sequência de Bases , Células Cultivadas , Células HeLa , Humanos , Canal de Potássio Kv1.4/metabolismo , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Xenopus
15.
J Neurosci ; 26(10): 2714-23, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16525050

RESUMO

Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel alpha subunit. This residue is conserved in mammalian sodium channels as well as in sodium channels from lower organisms. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared with the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations, which have changes predicted to increase neuronal firing.


Assuntos
Epilepsia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Arginina/genética , Linhagem Celular , Criança , Cisteína/genética , Relação Dose-Resposta à Radiação , Epilepsia/fisiopatologia , Saúde da Família , Feminino , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Modelos Moleculares , Modelos Neurológicos , Mutagênese/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.1 , Oócitos , Técnicas de Patch-Clamp/métodos , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Xenopus
16.
Exp Neurol ; 293: 159-171, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28373025

RESUMO

Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A, encoding the Nav1.1 channel, are responsible for a number of epilepsy disorders including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS). Patients with SCN1A mutations often experience prolonged early-life febrile seizures (FSs), raising the possibility that these events may influence epileptogenesis and lead to more severe adult phenotypes. To test this hypothesis, we subjected 21-23-day-old mice expressing the human SCN1A GEFS+ mutation R1648H to prolonged hyperthermia, and then examined seizure and behavioral phenotypes during adulthood. We found that early-life FSs resulted in lower latencies to induced seizures, increased severity of spontaneous seizures, hyperactivity, and impairments in social behavior and recognition memory during adulthood. Biophysical analysis of brain slice preparations revealed an increase in epileptiform activity in CA3 pyramidal neurons along with increased action potential firing, providing a mechanistic basis for the observed worsening of adult phenotypes. These findings demonstrate the long-term negative impact of early-life FSs on disease outcomes. This has important implications for the clinical management of this patient population and highlights the need for therapeutic interventions that could ameliorate disease progression.


Assuntos
Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões Febris/complicações , Convulsões Febris/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Arginina/genética , Convulsivantes/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Flurotila/toxicidade , Hipocampo/patologia , Histidina/genética , Humanos , Hipertermia Induzida/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Convulsões Febris/etiologia , Convulsões Febris/patologia
17.
Neuron ; 93(5): 1165-1179.e6, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28238546

RESUMO

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Animais , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Camundongos , Fenótipo , Convulsões/genética , Convulsões/metabolismo
18.
Curr Opin Neurobiol ; 13(3): 284-90, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12850212

RESUMO

Rapid inactivation of sodium channels is crucial for the normal electrical activity of excitable cells. There are many different types of inactivation, including fast, slow and ultra-slow, and each of these can be modulated by cellular factors or accessory subunits. Fast inactivation occurs by a 'hinged lid' mechanism in which an inactivating particle occludes the pore, whereas slow inactivation is most likely to involve a rearrangement of the channel pore. Subtle defects in either inactivation process can lead to debilitating human diseases, including periodic paralyses in muscle, ventricular fibrillation and long QT syndrome (delayed cardiac repolarization) in the heart, and epilepsy in the CNS.


Assuntos
Canais de Sódio/química , Canais de Sódio/metabolismo , Animais , Humanos , Mutação , Canais de Sódio/genética , Canais de Sódio/fisiologia
19.
Exp Neurol ; 275 Pt 1: 46-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26410685

RESUMO

Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.


Assuntos
Hipocampo/fisiopatologia , Interneurônios/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Células Piramidais/metabolismo , Convulsões/genética , Estimulação Acústica , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatologia , Suscetibilidade a Doenças , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia
20.
J Neurosci ; 22(13): 5300-9, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12097481

RESUMO

Alternative splicing is a major mechanism by which potassium and calcium channels increase functional diversity in animals. Extensive alternative splicing of the para sodium channel gene and developmental regulation of alternative splicing have been reported in Drosophila species. Alternative splicing has also been observed for several mammalian voltage-gated sodium channel genes. However, the functional significance of alternative splicing of sodium channels has not been demonstrated. In this study, we identified three mutually exclusive alternative exons encoding part of segments 3 and 4 of domain III in the German cockroach sodium channel gene, para(CSMA). The splice site is conserved in the mouse, fish, and human Na(v)1.6 sodium channel genes, suggesting an ancient origin. One of the alternative exons possesses a stop codon, which would generate a truncated protein with only the first two domains. The splicing variant containing the stop codon is detected only in the PNS, whereas the other two full-size variants were detected in both the PNS and CNS. When expressed in Xenopus oocytes, the two splicing variants produced robust sodium currents, but with different gating properties, whereas the splicing variant with the stop codon did not produce any detectable sodium current. Furthermore, these two functional splicing variants exhibited a striking difference in sensitivity to a pyrethroid insecticide, deltamethrin. Exon swapping partially reversed the channel sensitivity to deltamethrin. Our results therefore provide the first evidence that alternative splicing of a sodium channel gene produces pharmacologically distinct channels.


Assuntos
Processamento Alternativo , Baratas/genética , Genes de Insetos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Bloqueadores dos Canais de Sódio , Canais de Sódio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Baratas/metabolismo , Sequência Conservada , Condutividade Elétrica , Peixes , Humanos , Proteínas de Insetos/fisiologia , Inseticidas/farmacologia , Ativação do Canal Iônico , Camundongos , Dados de Sequência Molecular , Nitrilas , Piretrinas/farmacologia , RNA Mensageiro/biossíntese , Alinhamento de Sequência , Canais de Sódio/fisiologia , Distribuição Tecidual , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA