Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Urol Rep ; 25(10): 253-260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38869692

RESUMO

PURPOSE OF REVIEW: Prostate cancer (PCa) represents a significant health burden globally, ranking as the most diagnosed cancer among men and a leading cause of cancer-related mortality. Conventional treatment methods such as radiation therapy or radical prostatectomy have significant side effects which often impact quality of life. As our understanding of the natural history and progression of PCa has evolved, so has the evolution of management options. RECENT FINDINGS: Active surveillance (AS) has become an increasingly favored approach to the management of very low, low, and properly selected favorable intermediate risk PCa. AS permits ongoing observation and postpones intervention until definitive treatment is required. There are, however, challenges with selecting patients for AS, which further emphasizes the need for more precise tools to better risk stratify patients and choose candidates more accurately. Tissue-based biomarkers, such as ProMark, Prolaris, GPS (formerly Oncotype DX), and Decipher, are valuable because they improve the accuracy of patient selection for AS and offer important information on the prognosis and severity of disease. By enabling patients to be categorized according to their risk profiles, these biomarkers help physicians and patients make better informed treatment choices and lower the possibility of overtreatment. Even with their potential, further standardization and validation of these biomarkers is required to guarantee their broad clinical utility. Active surveillance has emerged as a preferred strategy for managing low-risk prostate cancer, and tissue-based biomarkers play a crucial role in refining patient selection and risk stratification. Standardization and validation of these biomarkers are essential to ensure their widespread clinical use and optimize patient outcomes.


Assuntos
Genômica , Prostatectomia , Neoplasias da Próstata , Conduta Expectante , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/terapia , Prostatectomia/métodos , Conduta Expectante/métodos , Biomarcadores Tumorais/genética , Seleção de Pacientes , Medição de Risco/métodos
2.
Vaccine ; 41(21): 3367-3379, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37100721

RESUMO

Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission. Using flow cytometry to efficiently screen for P. falciparum gamete/zygote surface reactivity, we identified 82 antibodies that bound live P. falciparum gametes/zygotes. Ten antibodies had significant transmission-reducing activity (TRA) in a standard membrane feeding assay and were subcloned along with 9 nonTRA antibodies as comparators. After subcloning, only eight of the monoclonals obtained have significant TRA. These eight TRA mAbs do not recognize epitopes present in any of the current recombinant transmission-blocking vaccine candidates, Pfs230D1M, Pfs48/45.6C, Pf47 D2 and rPfs25. One TRA mAb immunoprecipitates two surface antigens, Pfs47 and Pfs230, that are expressed by both gametocytes and gametes/zygotes. These two proteins have not previously been reported to associate and the recognition of both by a single TRA mAb suggests the Pfs47/Pfs230 complex is a new vaccine target. In total, Pfs230 was the dominant target antigen, with five of the eight TRA mAbs and 8 of 11 nonTRA gamete/zygote surface reactive mAbs interacting with Pfs230. Of the three remaining TRA mAbs, two recognized non-reduced, parasite-produced Pfs25 and one bound non-reduced, parasite-produced Pfs48/45. None of the TRA mAbs bound protein on an immunoblot of reduced gamete/zygote extract and two TRA mAbs were immunoblot negative, indicating none of the new TRA epitopes are linear. The identification of eight new TRA mAbs that bind epitopes not included in any of the constructs currently under advancement as transmission-blocking vaccine candidates may provide new targets worthy of further study.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Bloqueadores , Epitopos , Anticorpos Antiprotozoários , Anticorpos Monoclonais , Proteínas de Protozoários , Antígenos de Protozoários
3.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073193

RESUMO

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA