Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053356

RESUMO

The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.


Assuntos
Cardiomiopatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Ensaios Clínicos como Assunto , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Epigênese Genética , Humanos , Modelos Biológicos , Remodelação Vascular
2.
Front Mol Neurosci ; 15: 883378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782379

RESUMO

Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA