Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474241

RESUMO

Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.


Assuntos
Proteínas , Sequências de Repetição em Tandem , Proteínas/química , Sequência de Aminoácidos
2.
Genes (Basel) ; 14(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37761851

RESUMO

Intrinsically disordered regions (IDRs) in protein sequences are emerging as functionally important elements for interaction and regulation. While being generally flexible, we previously showed, by observation of experimentally obtained structures, that they contain regions of reduced sequence complexity that have an increased propensity to form structure. Here we expand the universe of cases taking advantage of structural predictions by AlphaFold. Our studies focus on low complexity regions (LCRs) found within IDRs, where these LCRs have only one or two residue types (polyX and polyXY, respectively). In addition to confirming previous observations that polyE and polyEK have a tendency towards helical structure, we find a similar tendency for other LCRs such as polyQ and polyER, most of them including charged residues. We analyzed the position of polyXY containing IDRs within proteins, which allowed us to show that polyAG and polyAK accumulate at the N-terminal, with the latter showing increased helical propensity at that location. Functional enrichment analysis of polyXY with helical propensity indicated functions requiring interaction with RNA and DNA. Our work adds evidence of the function of LCRs in interaction-dependent structuring of disordered regions, encouraging the development of tools for the prediction of their dynamic structural properties.


Assuntos
RNA , Sequência de Aminoácidos , Domínios Proteicos
3.
Biomolecules ; 12(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008992

RESUMO

There is increasing evidence that many intrinsically disordered regions (IDRs) in proteins play key functional roles through interactions with other proteins or nucleic acids. These interactions often exhibit a context-dependent structural behavior. We hypothesize that low complexity regions (LCRs), often found within IDRs, could have a role in inducing local structure in IDRs. To test this, we predicted IDRs in the human proteome and analyzed their structures or those of homologous sequences in the Protein Data Bank (PDB). We then identified two types of simple LCRs within IDRs: regions with only one (polyX or homorepeats) or with only two types of amino acids (polyXY). We were able to assign structural information from the PDB more often to these LCRs than to the surrounding IDRs (polyX 61.8% > polyXY 50.5% > IDRs 39.7%). The most frequently observed polyX and polyXY within IDRs contained E (Glu) or G (Gly). Structural analyses of these sequences and of homologs indicate that polyEK regions induce helical conformations, while the other most frequent LCRs induce coil structures. Our work proposes bioinformatics methods to help in the study of the structural behavior of IDRs and provides a solid basis suggesting a structuring role of LCRs within them.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas , Aminoácidos , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Domínios Proteicos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA