Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mol Cell Cardiol ; 166: 11-22, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114253

RESUMO

CD38 enzymatic activity regulates NAD+ and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions. AIM: To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling. METHODS AND RESULTS: When submitted to a treadmill exhaustion test, a way of evaluating cardiovascular performance, adult male CD38KO mice showed better exercise capacity. This benefit was also obtained in genetically modified mice with catalytically inactive (CI) CD38 and in WT mice treated with antibody 68 (Ab68) which blocks CD38 activity. Hearts from these 3 groups (CD38KO, CD38CI and Ab68) showed increased NAD+ levels. When CD38KO mice were treated with FK866 which inhibits NAD+ biosynthesis, exercise capacity as well as NAD+ in heart tissue decreased to WT levels. Electrocardiograms of conscious unrestrained CD38KO and CD38CI mice showed lower basal heart rates and higher heart rate variability than WT mice. Although inactivation of CD38 in mice resulted in increased SERCA2a expression in the heart, the frequency of spontaneous calcium release from the sarcoplasmic reticulum under stressful conditions (high extracellular calcium concentration) was lower in CD38KO ventricular myocytes. When mice were challenged with caffeine-epinephrine, CD38KO mice had a lower incidence of bidirectional ventricular tachycardia when compared to WT ones. CONCLUSION: CD38 inhibition improves exercise performance by regulating NAD+ homeostasis. CD38 is involved in cardiovascular function since its genetic ablation decreases basal heart rate, increases heart rate variability and alters calcium handling in a way that protects mice from developing catecholamine induced ventricular arrhythmias.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Cálcio , Glicoproteínas de Membrana/metabolismo , NAD , ADP-Ribosil Ciclase 1/genética , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Catecolaminas/metabolismo , Tolerância ao Exercício , Frequência Cardíaca , Masculino , Mamíferos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , NAD/metabolismo
2.
Pflugers Arch ; 474(6): 625-636, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235009

RESUMO

Systolic Ca2+ transients are shaped by the concerted summation of Ca2+ sparks across cardiomyocytes. At high pacing rates, alterations of excitation-contraction coupling manifest as pro-arrhythmic Ca2+ alternans that can be classified as concordant or discordant. Discordance is ascribed to out-of-phase alternation of local Ca2+ release across the cell, although the triggers and consequences of this phenomenon remain unclear. Rat ventricular cardiomyocytes were paced at increasing rates. A discordance index (SD of local alternans ratios) was developed to quantify discordance in confocal recordings of Ca2+ transients. Index values were significantly increased by rapid pacing, and negatively correlated with Ca2+ transient amplitude change, indicating that discordance is an important contributor to the negative Ca2+ transient-frequency relationship. In addition, the largest local calcium transient in two consecutive transients was measured to build a potential "best release" profile, which quantitatively confirmed discordance-induced Ca2+ release impairment (DICRI). Diastolic Ca2+ homeostasis was also observed to be disrupted by discordance, as late Ca2+ release events elicited instability of resting Ca2+ levels. Finally, the effects of two RyR2 inhibitors (VK-II-86 and dantrolene) were tested. While both compounds inhibited Ca2+ wave generation, only VK-II-86 augmented subcellular discordance. Discordant Ca2+ release is a quantifiable phenomenon, sensitive to pacing frequency, and impairs both systolic and diastolic Ca2+ homeostasis. Interestingly, RyR2 inhibition can induce discordance, which should be considered when evaluating pharmacological RyR2 modulators for clinical use.


Assuntos
Bloqueadores dos Canais de Cálcio , Sinalização do Cálcio , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático
4.
Circ J ; 83(1): 41-51, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30369562

RESUMO

BACKGROUND: It has been shown that carvedilol and its non ß-blocking analog, VK-II-86, inhibit spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The aim of this study is to determine whether carvedilol and VK-II-86 suppress ouabain-induced arrhythmogenic Ca2+ waves and apoptosis in cardiac myocytes. Methods and Results: Rat cardiac myocytes were exposed to toxic doses of ouabain (50 µmol/L). Cell length (contraction) was monitored in electrically stimulated and non-stimulated conditions. Ouabain treatment increased contractility, frequency of spontaneous contractions and apoptosis compared to control cells. Carvedilol (1 µmol/L) or VK-II-86 (1 µmol/L) did not affect ouabain-induced inotropy, but significantly reduced the frequency of Ca2+ waves, spontaneous contractions and cell death evoked by ouabain treatment. This antiarrhythmic effect was not associated with a reduction in Ca2+ calmodulin-dependent protein kinase II (CaMKII) activity, phospholamban and ryanodine receptor phosphorylation or SR Ca2+ load. Similar results could be replicated in human cardiomyocytes derived from stem cells and in a mathematical model of human myocytes. CONCLUSIONS: Carvedilol and VK-II-86 are effective to prevent ouabain-induced apoptosis and spontaneous contractions indicative of arrhythmogenic activity without affecting inotropy and demonstrated to be effective in human models, thus emerging as a therapeutic tool for the prevention of digitalis-induced arrhythmias and cardiac toxicity.


Assuntos
Cardiotoxicidade/prevenção & controle , Carvedilol , Modelos Cardiovasculares , Ouabaína/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Carvedilol/análogos & derivados , Carvedilol/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ouabaína/farmacologia , Ratos , Ratos Wistar
5.
Crit Care Med ; 45(4): e399-e408, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27648519

RESUMO

OBJECTIVES: Sepsis is associated with cardiac contractile dysfunction attributed to alterations in Ca handling. We examined the subcellular mechanisms involved in sarcoplasmic reticulum Ca loss that mediate altered Ca handling and contractile dysfunction associated with sepsis. DESIGN: Randomized controlled trial. SETTING: Research laboratorySUBJECTS:: Male wild type and transgenic miceINTERVENTIONS:: We induced sepsis in mice using the colon ascendens stent peritonitis model. MEASUREMENTS AND MAIN RESULTS: Twenty-four hours after colon ascendens stent peritonitis surgery, we observed that wild type mice had significantly elevated proinflammatory cytokine levels, reduced ejection fraction, and fractional shortening (ejection fraction %, 54.76 ± 0.67; fractional shortening %, 27.53 ± 0.50) compared with sham controls (ejection fraction %, 73.57 ± 0.20; fractional shortening %, 46.75 ± 0.38). At the cardiac myocyte level, colon ascendens stent peritonitis cells showed reduced cell shortening, Ca transient amplitude and sarcoplasmic reticulum Ca content compared with sham cardiomyocytes. Colon ascendens stent peritonitis hearts showed a significant increase in oxidation-dependent calcium and calmodulin-dependent protein kinase II activity, which could be prevented by pretreating animals with the antioxidant tempol. Pharmacologic inhibition of calcium and calmodulin-dependent protein kinase II with 2.5 µM of KN93 prevented the decrease in cell shortening, Ca transient amplitude, and sarcoplasmic reticulum Ca content in colon ascendens stent peritonitis myocytes. Contractile function was also preserved in colon ascendens stent peritonitis myocytes isolated from transgenic mice expressing a calcium and calmodulin-dependent protein kinase II inhibitory peptide (AC3-I) and in colon ascendens stent peritonitis myocytes isolated from mutant mice that have the ryanodine receptor 2 calcium and calmodulin-dependent protein kinase II-dependent phosphorylation site (serine 2814) mutated to alanine (S2814A). Furthermore, colon ascendens stent peritonitis S2814A mice showed preserved ejection fraction and fractional shortening (ejection fraction %, 73.06 ± 6.31; fractional shortening %, 42.33 ± 5.70) compared with sham S2814A mice (ejection fraction %, 71.60 ± 4.02; fractional shortening %, 39.63 ± 3.23). CONCLUSIONS: Results indicate that oxidation and subsequent activation of calcium and calmodulin-dependent protein kinase II has a causal role in the contractile dysfunction associated with sepsis. Calcium and calmodulin-dependent protein kinase II, through phosphorylation of the ryanodine receptor would lead to Ca leak from the sarcoplasmic reticulum, reducing sarcoplasmic reticulum Ca content, Ca transient amplitude and contractility. Development of organ-specific calcium and calmodulin-dependent protein kinase II inhibitors may result in a beneficial therapeutic strategy to ameliorate contractile dysfunction associated with sepsis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Animais , Antioxidantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Óxidos N-Cíclicos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução/efeitos dos fármacos , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Sepse/genética , Marcadores de Spin , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/genética
7.
J Mol Cell Cardiol ; 89(Pt B): 260-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497404

RESUMO

Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.


Assuntos
Aldosterona/farmacologia , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Masculino , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos
8.
J Mol Cell Cardiol ; 63: 135-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23911439

RESUMO

Tachycardia promotes cell death and cardiac remodeling, leading to congestive heart failure. However, the underlying mechanism of tachycardia- or rapid pacing (RP)-induced cell death remains unknown. Myocyte loss by apoptosis is recognized as a critical factor in the progression to heart failure and simulation of tachycardia by RP has been shown to increase the intracellular levels of at least two potentially proapoptotic molecules, Ca(2+) and reactive oxygen species (ROS). However, whether these molecules mediate tachycardia- or RP-induced cell death has yet to be determined. The aim of this study was to examine the subcellular mechanisms underlying RP-induced apoptosis. For this purpose rat ventricular myocytes were maintained quiescent or paced at 0.5, 5 and 8Hz for 1hr. RP at 5 and 8Hz decreased myocyte viability by 58±3% and 75±6% (n=24), respectively, compared to cells maintained at 0.5Hz, and increased caspase-3 activity and Bax/Bcl-2 ratio, indicative of apoptosis. RP-induced cell death and apoptosis were prevented when pacing protocols were conducted in the presence of either the ROS scavenger, MPG, or nifedipine to reduce Ca(2+) entry or the CaMKII inhibitors, KN93 and AIP. Consistently, myocytes from transgenic mice expressing a CaMKII inhibitory peptide (AC3-I) were protected against RP-induced cell death. Interestingly, tetracaine and carvedilol used to reduce ryanodine receptor (RyR) diastolic Ca(2+) release, and ruthenium red used to prevent Ca(2+) entry into the mitochondria prevented RP-induced cell death, whereas PI3K inhibition with Wortmannin exacerbated pacing-induced cell mortality. We conclude that CaMKII activation and ROS production are involved in RP-induced apoptosis. Particularly, our results suggest that CaMKII-dependent posttranslational modifications of the cardiac ryanodine receptor (RyR) leading to enhanced diastolic Ca(2+) release and mitochondrial Ca(2+) overload could be the underlying mechanism involved. We further show that RP simultaneously activates a protective cascade involving PI3K/AKT signaling which is however, insufficient to completely suppress apoptosis.


Assuntos
Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taquicardia/metabolismo , Androstadienos/farmacologia , Animais , Morte Celular , Sobrevivência Celular , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Wortmanina
9.
Curr Res Physiol ; 5: 171-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356048

RESUMO

Background: The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca2+ release and whether this effect is linked to a change in RyR2 phosphorylation. Methods: & Results: Human embryonic kidney (HEK293) cells with inducible RyR2 expression were treated with the cGMP analogue 8-Br-cGMP (100 µM) to activate endogenous PKG. In cells transfected with luminal Ca2+ sensor, D1ER, PKG activation significantly reduced the threshold for RyR2-mediated spontaneous Ca2+ release (93.9 ± 0.4% of store size with vehicle vs. 91.7 ± 0.8% with 8-Br-cGMP, P = 0.04). Mutation of the proposed PKG phosphorylation sites, S2808 and S2030, either individually or as a combination, prevented the decrease in Ca2+ release threshold induced by endogenous PKG activation. Interestingly, despite a functional dependence on expression of RyR2 phosphorylation sites, 8-Br-cGMP activation of PKG did not promote a detectable change in S2808 phosphorylation (P = 0.9). Paradoxically, pharmacological inhibition of PKG with KT 5823 (1 µM) also reduced the threshold for spontaneous Ca2+ release through RyR2 without affecting S2808 phosphorylation. Silencing RNA knockdown of endogenous PKG expression also had no quantifiable effect on RyR2 S2808 phosphorylation (P = 0.9). However, unlike PKG inhibition with KT 5823, PKG knockdown did not alter spontaneous Ca2+ release propensity or luminal Ca2+ handling. Conclusion: In an intact cell model, activation of endogenous PKG reduces the threshold for RyR2-mediated spontaneous Ca2+ release in a manner dependent on the RyR2 phosphorylation sites S2808 and S2030. This study clarifies the regulation of RyR2 Ca2+ release by endogenous PKG and functionally implicates the role of RyR2 phosphorylation.

10.
Channels (Austin) ; 11(5): 415-425, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28636428

RESUMO

Ryanodine Receptors (RyRs) are intracellular Ca2+ channels that mediate Ca2+ flux from the sarco(endo)plasmic reticulum in many cell types. The interaction of RyRs with FK506-binding proteins (FKBPs) has been proposed as an important regulatory mechanism, where the loss of this interaction leads to channel dysfunction. In the heart, phosphorylation of RyR has been suggested to disrupt the RyR-FKBP interaction promoting altered Ca2+ signaling, heart failure and arrhythmias. However, the functional result of FKBP interaction with RyR and how this interaction is regulated remains highly controversial. Recently, high resolution structures of RyR have provided novel aspects to the ongoing debate. This review will discuss the most recent functional data in light of these new structures.


Assuntos
Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Fosforilação , Ligação Proteica , Transdução de Sinais
12.
Circ Arrhythm Electrophysiol ; 4(6): 947-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22009705

RESUMO

BACKGROUND: Digitalis-induced Na(+) accumulation results in an increase in Ca(2+)(i) via the Na(+)/Ca(2+) exchanger, leading to enhanced sarcoplasmic reticulum (SR) Ca(2+) load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca(2+)(i) could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved. METHODS AND RESULTS: In paced rat ventricular myocytes (0.5 Hz), 50 µmol/L ouabain increased contraction amplitude by 160 ± 5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca(2+) waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 µmol/L KN93 but not by 2.5 µmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 µmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca(2+) content and Ca(2+) spark frequency, indicative of enhanced SR Ca(2+) leak. KN93 suppressed the ouabain-induced increase in Ca(2+) spark frequency without affecting SR Ca(2+) content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice. CONCLUSIONS: These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca(2+) leak from the SR, is the underlying mechanism involved.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ouabaína/toxicidade , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Benzilaminas/farmacologia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Estimulação Cardíaca Artificial , Células Cultivadas , Eletrocardiografia , Ativação Enzimática , Ventrículos do Coração/enzimologia , Ventrículos do Coração/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia , Trocador de Sódio e Cálcio/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA