Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 264: 115973, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096652

RESUMO

Infections caused by drug-resistant bacteria have become a new challenge in infection treatment, gravely endangering public health. Chloramphenicol (CL) is a well-known antibiotic which has lost its efficacy due to bacterial resistance. To address this issue, herein we report the design, synthesis and biological evaluations of novel triphenylphosphonium chloramphenicol conjugates (TPP+-CL). Study results indicated that compounds 39 and 42 possessed remarkable antibacterial effects against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 2 µg/mL, while CL was inactive to the tested MRSA strains. In addition, these conjugates exhibited rapid bactericidal properties and low toxicity, and did not readily induced bacterial resistance, obviously outperforming the parent drug CL. In a mouse model infected with a clinically isolated MRSA strain, compound 39 at a dose of 20 mg/kg exhibited a comparable or even better in vivo anti-MRSA efficacy than the golden standard drug vancomycin, while no toxicity was observed.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Cloranfenicol/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
2.
Eur J Med Chem ; 261: 115823, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37839345

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 µg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sinergismo Farmacológico , Antibacterianos/farmacologia , Oxacilina/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA