Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8022): 843-849, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020180

RESUMO

Ubiquitination pathways have crucial roles in protein homeostasis, signalling and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2 and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6, but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here we demonstrate that a bacterial operon associated with phage defence islands encodes a complete ubiquitination pathway. Two structures of a bacterial E1-E2-Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 possesses an amino-terminal inactive adenylation domain and a carboxy-terminal active adenylation domain with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C terminus positioned for adenylation, and a second structure mimics an E1-to-E2 transthioesterification state with the E1 CYS domain adjacent to the bound E2. We show that a deubiquitinase in the same pathway preprocesses the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Escherichia , Enzimas Ativadoras de Ubiquitina , Enzimas de Conjugação de Ubiquitina , Ubiquitinação , Ubiquitinas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Escherichia/química , Escherichia/enzimologia , Escherichia/imunologia , Escherichia/virologia , Evolução Molecular , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Óperon/genética , Domínios Proteicos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Ubiquitinas/metabolismo , Ubiquitinas/química , Eucariotos/enzimologia , Eucariotos/metabolismo
2.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808811

RESUMO

Ubiquitination and related pathways play crucial roles in protein homeostasis, signaling, and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2, and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6 but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here, we demonstrate that a bacterial antiviral immune system encodes a complete ubiquitination pathway. Two structures of a bacterial E1:E2:Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 encodes an N-terminal inactive adenylation domain (IAD) and a C-terminal active adenylation domain (AAD) with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C-terminus positioned for adenylation, and the E1 CYS domain poised nearby for thioester formation. A second structure mimics an E1-to-E2 transthioesterification state, with the E1 CYS domain rotated outward and its catalytic cysteine adjacent to the bound E2. We show that a deubiquitinase (DUB) in the same pathway pre-processes the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA