RESUMO
Excitons, electron-hole pairs in semiconductors, can be utilized as information carriers with a spin or valley degree of freedom. However, manipulation of excitons' motion is challenging because of their charge-neutral characteristic and short recombination lifetimes. Here we demonstrate electric-field-driven drift and funneling of charged excitons (i.e., trions) toward the center of a MoSe2 monolayer. Using a simple bottom-gate device, we control the electric fields in the vicinity of the suspended monolayer, which increases the trion density and pulls down the layer. We observe that locally excited trions are subjected to electric force and, consequently, drift toward the center of the stretched layer. The exerting electric force on the trion is estimated to be 102-104 times stronger than the strain-induced force in the stretched monolayer, leading to the successful observation of trion drift under continuous-wave excitation. Our findings provide a new route for manipulating trions and achieving new types of optoelectronic devices.
RESUMO
The transverse nature of light leads to longitudinal optical spin. Here, the unprecedented transverse optical spin of propagating waves and guided modes in a gyroelectric medium is clarified. We identify the propagation modes in a bulk gyroelectric medium and their polarization in terms of optical spin. The anisotropic permittivity of a gyroelectric medium results in two propagation modes, slow and fast, in which the optical spin varies according to the propagation direction. When the magnetization direction of the gyroelectric medium and the propagation direction of the light are not parallel, these modes possess both the longitudinal and transverse components of optical spin. We also confirm that a gyroelectric slab waveguide induces transverse optical spin in the guided light. We investigate the transport behavior of transverse optical spin in a gyroelectric slab using numerical calculations with a modified 3D finite difference time domain method. These new gyroelectric guided modes offer a novel approach to the manipulation of optical spin on a nanoscale.
RESUMO
Understanding the chiral light-matter interaction offers a new way to control the direction of light. Here, we present an unprecedently long-range transport of valley information of a 2D-layered semiconductor via the directional emission through a dielectric waveguide. In the evanescent near field region of the dielectric waveguide, robust and homogeneous transverse optical spin exists regardless of the size of the waveguide. The handedness of transverse optical spin, determined by the direction of guided light mode, leads to the chiral coupling of light with valley-polarized excitons. Experimentally, we demonstrated ultra-low propagation loss which enabled a 16â µm long propagation of directional emission from valley-polarized excitons through a ZnO waveguide. The estimated directionality of exciton emission from a valley was about 0.7. We confirmed that a dielectric waveguide leads to a better performance than does a plasmonic waveguide in terms of both the directional selectivity of guided emission and the efficiency of optical power reaching the ends of the waveguide when a propagation length is greater than â¼10â µm. The proposed dielectric waveguide system represents an essential platform for efficient spin/valley-photon interfaces.
RESUMO
Valley pseudospin has emerged as a good quantum number to encode information, analogous to spin in spintronics. Two-dimensional transition metal dichalcogenides (2D TMDCs) recently attracted enormous attention for their easy access to the valley pseudospin through valley-dependent optical transitions. Different ways have been reported to read out the valley pseudospin state. For practical applications, on-chip access to and manipulation of valley pseudospins is paramount, not only to read out but especially to initiate the valley pseudospin state. Here, we experimentally demonstrate the selective on-chip, optical near-field initiation of valley pseudospins at room temperature. We exploit a nanowire optical waveguide, such that the local transverse optical spin of its guided modes selectively excites a specific valley pseudospin. Furthermore, spin-momentum locking of the transverse optical spin enables us to flip valley pseudospins with the opposite propagation direction. Thus, we open up ways to realize integrated hybrid opto-valleytronic devices.
RESUMO
Recently, exciton polaritons in a semiconductor microcavity were found to condense into a coherent ground state much like a Bose-Einstein condensate and a superfluid. They have become a unique testbed for generating and manipulating quantum vortices in a driven-dissipative superfluid. Here, we generate an exciton-polariton condensate with a nonresonant Laguerre-Gaussian optical beam and verify the direct transfer of light's orbital angular momentum to an exciton-polariton quantum fluid. Quantized vortices are found in spite of the large energy relaxation involved in nonresonant pumping. We identified phase singularity, density distribution, and energy eigenstates for the vortex states. Our observations confirm that nonresonant optical Laguerre-Gaussian beam can be used to manipulate chirality, topological charge, and stability of the nonequilibrium quantum fluid. These vortices are quite robust, only sensitive to the orbital angular momentum of light and not other parameters such as energy, intensity, size, or shape of the pump beam. Therefore, optical information can be transferred between the photon and exciton-polariton with ease and the technique is potentially useful to form the controllable network of multiple topological charges even in the presence of spectral randomness in a solid state system.
RESUMO
The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter-light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over â¼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing.
RESUMO
Emission control of a quantum emitter made of semiconductor materials is of significance in various optical applications. Specifically, the realization of efficient quantum emitters is important because typical semiconductor quantum dots are associated with low extraction efficiency levels due to their high refractive index contrast. Here, we report bright and unidirectional emission from a site-controlled InGaN quantum dot formed on the apex of a silver-coated GaN nanopyramidal structure. We show that the majority of the extracted light from the quantum dot is guided toward the bottom of the pyramid with high directionality. We also demonstrate that nanopyramid structures can be detached from a substrate, thus demonstrating great potential of this structure in various applications. To clarify the directional radiation, the far-field radiation pattern is measured using Fourier microscopy. This scheme will pave the way toward the realization of a bright and unidirectional quantum emitter along with easy fabrication and large-area reproducibility.
RESUMO
The hybrid nature of exciton polaritons opens up possibilities for developing a new concept nonlinear photonic device (e.g., polariton condensation, switching, and transistor) with great potential for controllability. Here, we proposed a novel type of polariton system resulting from strong coupling between a two-dimensional exciton and whispering gallery mode photon using a core-shell GaN/InGaN hexagonal wire. High quality, nonpolar InGaN multiple-quantum wells (MQWs) were conformally formed on a GaN core nanowire, which was spatially well matched with whispering gallery modes inside the wire. Both high longitudinal-transverse splitting of nonpolar MQWs and high spatial overlap with whispering gallery modes lead to unprecedented large Rabi splitting energy of â¼180 meV. This structure provides a robust polariton effect with a small footprint; thus, it could be utilized for a wide range of interesting applications.
RESUMO
Confining photons in the smallest possible volume has long been an objective of the nanophotonics community. In this Letter, we propose and demonstrate a three-dimensional (3D) gap-plasmon antenna that enables extreme photon squeezing in a 3D fashion with a modal volume of 1.3 × 10(-7) λ(3) (â¼4 × 10 × 10 nm(3)) and an intensity enhancement of 400â¯000. A three-dimensionally tapered 4 nm air-gap is formed at the center of a complementary nanodiabolo structure by ion-milling 100 nm-thick gold film along all three dimensions using proximal milling techniques. From a 4 nm-gap antenna, a nonlinear second-harmonic signal more than 27â¯000-times stronger than that from a 100 nm-gap antenna is observed. In addition, scanning cathodoluminescence images confirm unambiguous photon confinement in a resolution-limited area 20 × 20 nm(2) on top of the nano gap.
RESUMO
Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices.
RESUMO
Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction. Local laser illumination of the core-shell quantum well rods yielded a huge contrast in light output intensities from opposite ends of the rod.
RESUMO
With the rapid emergence of artificial intelligence (AI) technology and the exponential growth in data generation, there is an increasing demand for high-performance and highly integratable optical modulators. In this work, we present an ultra-compact exciton-polariton Mach-Zehnder (MZ) modulator based on WS2 multilayers. The guided exciton-polariton modes arise in an ultrathin WS2 waveguide due to the strong excitonic resonance. By locally exciting excitons using a modulation laser in one arm of the MZ modulator, we induce changes in the effective refractive index of the polariton mode, resulting in modulation of transmitted intensity. Remarkably, we achieve a maximum modulation of -6.20 dB with an ultra-short modulation length of 2 µm. Our MZ modulator boasts an ultra-compact footprint area of ~30 µm² and a thin thickness of 18 nm. Our findings present new opportunities for the advancement of highly integrated and efficient photonic devices utilizing van der Waals materials.
RESUMO
The strong excitonic properties of transition metal dichalcogenides (TMD) have led to the successful demonstration of exciton-polaritons (EPs) in various optical cavity structures. Recently, self-hybridized EPs have been discovered in a bare TMD layer, but experimental investigation is still lacking because of their nonradiative nature. Herein, the direct observation of self-hybridized EPs in a bare multilayer WS2 via the evanescent field coupling technique is reported. Because of the thickness-dependent Rabi splitting energy, the dispersion curves of the EPs change sensitively with sample thickness. Moreover, continuous tuning of EP dispersion curves is demonstrated by controlling the excitation laser power. Lastly, it is observed that guided EPs retain valley polarization up to 0.2 at room temperature, representing a valley-preserved strong coupling regime. It is believed that the high tunability and valley polarization properties of the guided EPs in bare TMD layers can facilitate new nanophotonic and valleytronic applications.
RESUMO
Anodic aluminum oxide (AAO) films with different pore sizes were prepared to modulate the effective refractive index and birefringence. To investigate the relationship between the refractive index and the pore size of the AAO film, optical constants were obtained using a prism coupler with various lasers. With experimental results, the dispersion curve of alumina itself without pores was extracted using a theoretical anisotropic model. We demonstrated that AAO films could offer a wide range of refractive index and birefringence values for optical device applications. Furthermore, index profiles as a function of the thickness of the AAO films were obtained by inverse Wentzel-Kramer-Brillouin approximation to examine the optical homogeneity.
RESUMO
We report a hexagonal GaN nanorod-based two-dimensional photonic crystal (PhC) slab for phosphor-conversion white light emitting devices analyzed by three-dimensional finite-difference time-domain simulation; this slab has a broad reflection band at yellow wavelength with low Fabry-Pérot background at normal incidence. For practical use as a wavelength-selective reflector, a buffer layer under the PhC slab is employed to sustain the nanorods in the PhC slab. However, we observed that the buffer layer placed below the slab destroys the broad reflection band due to evanescent coupling of electromagnetic field in the slab and the buffer layer. By introducing small-sized base pillars between the slab and the buffer layer, we could decouple the interaction between the slab and the buffer layer and maintain the broad reflection band without any unexpected dips. Since this GaN nanorod-based PhC slab is designed for practical light emitting devices by considering dielectric and transparent conducting layers, this structure is directly applicable for developing hybrid white light emitting devices having both an (active) blue-color-emitting nanorod emitters and a (passive) normal reflector of phosphor emission.
RESUMO
The emergence of two-dimensional transition metal dichalcogenide materials has sparked intense activity in valleytronics, as their valley information can be encoded and detected with the spin angular momentum of light. We demonstrate the valley-dependent directional coupling of light using a plasmonic nanowire-tungsten disulfide (WS2) layers system. We show that the valley pseudospin in WS2 couples to transverse optical spin of the same handedness with a directional coupling efficiency of 90 ± 1%. Our results provide a platform for controlling, detecting, and processing valley and spin information with precise optical control at the nanoscale.
RESUMO
White light-emitting diodes (LEDs) are becoming an alternative general light source, with huge energy savings compared to conventional lighting. However, white LEDs using phosphor(s) suffer from unavoidable Stokes energy converting losses, higher manufacturing cost, and reduced thermal stability. Here, we demonstrate electrically driven, phosphor-free, white LEDs based on three-dimensional gallium nitride structures with double concentric truncated hexagonal pyramids. The electroluminescence spectra are stable with varying current. The origin of the emission wavelength is studied by cathodoluminescence and high-angle annular dark field scanning transmission electron microscopy experiments. Spatial variation of the carrier injection efficiency is also investigated by a comparative analysis between spatially resolved photoluminescence and electroluminescence.
RESUMO
White light emitting InGaN nanostructures hold a key position in future solid-state lighting applications. Although many suggested approaches to form group III-nitride vertical structures have been reported, more practical and cost effective methods are still needed. Here, we present a new approach to GaN/InGaN core-shell nanostructures at a wafer level formed by chemical vapor-phase etching and metal-organic chemical vapor deposition. Without a patterning process, we successfully obtained high quality and polarization field minimized In-rich GaN/InGaN core-shell nanostructures. The various quantum well thicknesses and the multi-facets of the obelisk-shaped core-shell nanostructures provide a broad spectrum of the entire visible range without changing the InGaN growth temperature. Due to their high crystal quality and polarization field reduction, the core-shell InGaN quantum wells show an ultrafast radiative recombination time of less than 200 ps and uniformly high internal quantum efficiency in the broad spectral range. We also investigated the important role of polarization fields in the complex recombination dynamics in InGaN quantum wells.
RESUMO
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.