Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(1): 277-289, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605795

RESUMO

Clinically used small-molecular photosensitizers (PSs) for photodynamic therapy (PDT) share similar disadvantages, such as the lack of selectivity towards cancer cells, short blood circulation time, life-threatening phototoxicity, and low physiological solubility. To overcome such limitations, the present study capitalizes on the synthesis of ultra-small hydrophilic porphyrin-based silica nanoparticles (core-shell porphyrin-silica dots; PSDs) to enhance the treatment outcomes of cancer via PDT. These ultra-small PSDs, with a hydrodynamic diameter less than 7 nm, have an excellent aqueous solubility in water (porphyrin; TPPS3-NH2) and enhanced tumor accumulation therefore exhibiting enhanced fluorescence imaging-guided PDT in breast cancer cells. Besides ultra-small size, such PSDs also displayed an excellent biocompatibility and negligible dark cytotoxicity in vitro. Moreover, PSDs were also found to be stable in other physiological solutions as a function of time. The fluorescence imaging of porphyrin revealed a prolonged residence time of PSDs in tumor regions, reduced accumulation in vital organs, and rapid renal clearance upon intravenous injection. The in vivo study further revealed reduced tumor growth in 4T1 tumor-bearing bulb mice after laser irradiation explaining the excellent photodynamic therapeutic efficacy of ultra-small PSDs. Thus, ultrasmall hydrophilic PSDs combined with excellent imaging-guided therapeutic abilities and renal clearance behavior represent a promising platform for cancer imaging and therapy.

2.
Signal Transduct Target Ther ; 7(1): 64, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228516

RESUMO

Targeted photodynamic therapy (TPDT) is considered superior to conventional photodynamic therapy due to the enhanced uptake of photosensitizers by tumor cells. In this paper, an amphiphilic and asymmetric cyclo-Arg-Gly-Asp-d-Tyr-Lys(cRGDyK)-conjugated silicon phthalocyanine (RSP) was synthesized by covalently attaching the tripeptide Arg-Gly-Asp (RGD) to silicone phthalocyanine in the axial direction for TPDT of triple-negative breast cancer (TNBC). RSP was characterized by spectroscopy as a monomer in physiological buffer. Meanwhile, the modification of RSP with RGD led to a high accumulation of the photosensitizer in TNBC cells overexpressing ανß3 integrin receptors which can bind RGD, greatly reducing the risk of phototoxicity. In vitro photodynamic experiments showed that the IC50 of RSP was 295.96 nM in the 4T1 cell line, which caused significant apoptosis of the tumor cells. The tumor inhibition rate of RSP on the orthotopic murine TNBC achieved 74%, while the untargeted photosensitizer exhibited no obvious tumor inhibition. Overall, such novel targeted silicon phthalocyanine has good potential for clinical translation due to its simple synthesis route, strong targeting, and high therapeutic efficacy for TPDT treatment of TNBC.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Isoindóis , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fotoquimioterapia/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Adv Sci (Weinh) ; 8(10): 2002178, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026428

RESUMO

As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/terapia , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos , Animais , Técnicas Biossensoriais/métodos , Terapia Combinada , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Signal Transduct Target Ther ; 5(1): 12, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32296050

RESUMO

Stage IV breast cancer, which has a high risk of invasion, often develops into metastases in distant organs, especially in the lung, and this could threaten the lives of women. Thus, the development of more advanced therapeutics that can efficiently target metastatic foci is crucial. In this study, we built an dual-acting therapeutic strategy using micelles with high stability functionalized with fibronectin-targeting CREKA peptides encapsulating two slightly soluble chemotherapy agents in water, doxorubicin (D) and vinorelbine (V), which we termed C-DVM. We found that small C-DVM micelles could efficiently codeliver drugs into 4T1 cells and disrupt microtubule structures. C-DVM also exhibited a powerful ability to eradicate and inhibit invasion of 4T1 cells. Moreover, an in vivo pharmacokinetics study showed that C-DVM increased the drug circulation half-life and led to increased enrichment of drugs in lung metastatic foci after 24 h. Moreover, dual-acting C-DVM treatment led to 90% inhibition of metastatic foci development and reduced invasion of metastases. C-DVM could potentially be used as a targeted treatment for metastasis and represents a new approach with higher therapeutic efficacy than conventional chemotherapy for stage IV breast cancer that could be used in the future.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fibronectinas/antagonistas & inibidores , Terapia de Alvo Molecular , Oligopeptídeos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Fibronectinas/genética , Humanos , Micelas , Nanopartículas/química , Metástase Neoplásica , Estadiamento de Neoplasias , Oligopeptídeos/química , Vinorelbina/química , Vinorelbina/farmacologia
5.
ACS Appl Mater Interfaces ; 10(35): 29385-29397, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30096224

RESUMO

Triple-negative breast cancer (TNBC) is a malignant and refractory disease with high morbidity and mortality. The TNBC shows no response to hormonal therapy nor targeted therapy due to the lack of known targetable biomarkers. Furthermore, the TNBC also exhibits a high degree of heterogeneity that leads to cancer evolution, drug resistance, metastatic progression, and recurrence, arising from the tumor-initiating properties of cancer stem cells (CSCs). Thus, the development of radical therapeutic regimens with high efficacy and limited side effects is crucial. In this study, we designed an innovative ternary cocktail chemotherapy by using Lovastatin (L)-loaded Janus camptothecin-floxuridine conjugate (CF) nanocapsules (NCs) with ultrahigh drug loading capacity. The obtained LCF NCs were shown to be able to suppress growth of TNBC, including inhibition of growth and metastasis of CSCs, both in vitro and in tumor-bearing mice. Moreover, in animal experiments, the LCF NCs showed sustained and synchronous drug release (half-life > 300 min), 85.2% reduction in pulmonary metastases, and no cancer recurrence during one-month observation post-treatment. Thus, this innovative LCF NC design provides a simple and synergistic strategy for the development of simultaneous triple chemotherapy and could be an efficacious, safe, and amenable choice with higher therapeutic relevance and fewer toxic complications than conventional multidrug delivery systems for TNBC treatment in the future.


Assuntos
Camptotecina , Floxuridina , Lovastatina , Nanocápsulas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Camptotecina/administração & dosagem , Camptotecina/química , Linhagem Celular Tumoral , Floxuridina/administração & dosagem , Floxuridina/química , Humanos , Lovastatina/administração & dosagem , Lovastatina/química , Camundongos , Nanocápsulas/administração & dosagem , Nanocápsulas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA