Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Respir Res ; 25(1): 40, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238740

RESUMO

BACKGROUND: Although EGFR-TKI resistance mechanisms in non-small cell lung cancer (NSCLC) have been extensively studied, certain patient subgroups remain with unclear mechanisms. This retrospective study analysed mutation data of NSCLC patients with EGFR-sensitive mutations and high programmed death-ligand 1 (PD-L1) expression or high TMB to identify primary resistance mechanisms. METHODS: Hybrid capture-based next-generation sequencing (NGS) was used to analyse mutations in 639 genes in tumor tissues and blood samples from 339 NSCLC patients. PD-L1 immunohistochemical staining was also performed on the same cell blocks. Molecular and pathway profiles were compared among patient subgroups. RESULTS: TMB was significantly higher in lung cancer patients with EGFR-sensitive mutations and high PD-L1 expression. Compared with the high-expression PD-L1 or high TMB and low-expression or TMB groups, the top 10 genes exhibited differences in both gene types and mutation rates. Pathway analysis revealed a significant mutations of the PI3K signaling pathway in the EGFR-sensitive mutation group with high PD-L1 expression (38% versus 12%, p < 0.001) and high TMB group (31% versus 13%, p < 0.05). Notably, PIK3CA and PTEN mutations emerged as the most important differentially mutated genes within the PI3K signaling pathway. CONCLUSIONS: Our findings reveal that the presence of PI3K signaling pathway mutations may be responsible for inducing primary resistance to EGFR-TKIs in NSCLC patients with EGFR-sensitive mutations along with high PD-L1 expression or high TMB. This finding is of great significance in guiding subsequent precision treatments in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1 , Estudos Retrospectivos , Fosfatidilinositol 3-Quinases/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Clin Genet ; 103(5): 529-539, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541162

RESUMO

Thymic epithelial tumors (TETs) are rare mediastinal tumors whose tumorigenesis mechanism is poorly understood. Characterization of molecular alterations in TETs may contribute to a better understanding of tumorigenesis and prognosis. Hybrid capture-based next-generation sequencing was performed on tumor tissues from 47 TETs (39 thymomas and 8 thymic carcinomas) to detect mutations in 315 tumor-associated genes. In total, 178 nonsynonymous mutations were identified, with a median of 3.79 per tumor in 47 TETs. Higher tumor mutation burden (TMB) level was more common in older TET patients, and significantly associated with the more advanced pathological type, especially in thymic carcinomas (TC) patients. The gene mutation profiles of B1-3, A/AB, and TC patients varied greatly. In the actionable mutations analysis, we found 32 actionable mutations in 24 genes. Among them, NFKBIA and TP53 mutations was the most frequently, which were only identified in TCs. Additionally, TCGA database analysis found that the expression of NFKBIA mRNA in the TCs were significantly higher than thymomas. TET patients with high NFKBIA expression had shorter overall survival compared with patients with low/medium NFKBIA expression, thus providing insights to consider NFKBIA as a potential prognosis biomarker and therapeutic target in TETs.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Humanos , Idoso , Timoma/genética , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia , Neoplasias Epiteliais e Glandulares/genética , Prognóstico , Carcinogênese , Genômica
3.
Clin Genet ; 103(2): 200-208, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346122

RESUMO

Immune checkpoint inhibitors (ICIs) improve overall survival in patients with advanced gastric cancer (GC). However, the molecular characterization of GC in ICIs responders is unclear. A total of 288 advanced GC patients were included in this study. Next-generation sequencing analysis was performed on tumor tissue and paired blood to screen for somatic mutants in 639 tumor-associated genes. We demonstrated that ARID1A, HER2/3/4, KMT2C/2D, LRP1B, PIK3CA, SPTA1, and TP53 mutations were significantly correlated with high tumor mutation burden (TMB) score, as well as HER2 amplification. For HER2 and PIK3CA mutations types, this relationship was statistically significant with age and TP53 mutation status, which was also found in the CDH1 gene. These results were confirmed by sequencing 873 GC cases in the cBioPortal database. PIK3CA mutations appear to be associated with longer survival in elderly population and TP53 mutant subtypes. For the first time, we found that GC patients ≥60 years old or with TP53 mutated type and PIK3CA mutations were associated with higher TMB and better ICI response. Building upon the age and TP53 mutation status, this study suggested a novel stratification approach to GC patients and explored the correlations between genetic somatic mutations and TMB score.


Assuntos
Neoplasias Gástricas , Humanos , Idoso , Pessoa de Meia-Idade , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53/genética , Biomarcadores Tumorais/genética , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Imunoterapia
4.
Anticancer Drugs ; 33(9): 966-969, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946511

RESUMO

Osimertinib, an orally administered third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is widely approved for the first-line and second-line treatment of advanced non-small-cell lung cancer (NSCLC) with EGFR mutations. However, the rapid development of osimertinib resistance renders the unsustainable treatment benefit. Patients with EGFR -mutated NSCLC who develop osimertinib resistance, especially those acquiring relatively rare and 'off-target' resistance mutations, still lack effective therapeutic options for postosimertinib therapy. Herein, we reported a 73-year-old woman diagnosed with T1N3M1 lung adenocarcinoma harboring EGFR L858R mutation, who acquired two GNAS mutations (R201C and R201H) and lost the EGFR L858R mutation after progression on icotinib and osimertinib. The patient was subsequently treated with trametinib and there was no obvious tumor increase. Our study revealed that GNAS R201 can confer the osimertinib resistance in EGFR -positive NSCLC, and present the first report of the prevalence of GNAS R201C and R201H mutants in NSCLC which response to trametinib treatment. Our case suggests that trametinib could be a treatment option in NSCLC patients harboring GNAS -activating mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Idoso , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cromograninas/genética , Cromograninas/uso terapêutico , Receptores ErbB/genética , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/uso terapêutico , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas , Pirimidinas , Pirimidinonas
5.
Plant J ; 85(1): 3-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611158

RESUMO

Seed dormancy and germination are important physiological processes during the life cycle of a seed plant. Recently, auxin has been characterized as a positive regulator that functions during seed dormancy and as a negative regulator during germination. Through chemical genetic screenings, we have identified a small molecule, germostatin (GS), which effectively inhibits seed germination in Arabidopsis. GSR1 (germostatin resistance locus 1) encodes a tandem plant homeodomain (PHD) finger protein, identified by screening GS-resistant mutants. Certain PHD fingers of GSR1 are capable of binding unmethylated H3K4, which has been reported as an epigenetic mark of gene transcriptional repression. Biochemical studies show that GSR1 physically interacts with the transcriptional repressor ARF16 and attenuates the intensity of interaction of IAA17/ARF16 by directly interacting with IAA17 to release ARF16. Further results show that axr3-1, arf10 arf16 are hyposensitive to GS, and gsr1 not only resists auxin-mediated inhibition of seed germination but also displays decreased dormancy. We therefore propose that GSR1 may form a co-repressor with ARF16 to regulate seed germination. Besides promoting auxin biosynthesis via upregulating expression of YUCCA1, GS also enhances auxin responses by inducing degradation of DΙΙ-VENUS and upregulating expression of DR5-GFP. In summary, we identified GSR1 as a member of the auxin-mediated seed germination genetic network, and GS, a small non-auxin molecule that specifically acts on auxin-mediated seed germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes Reporter , Germinação , Proteínas de Homeodomínio/genética , Mutação , Dormência de Plantas , Sementes/genética , Sementes/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
6.
Am J Cancer Res ; 14(2): 796-808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455414

RESUMO

The expression level of PD-L1 does not accurately predict the prognosis of advanced colorectal cancer (CRC) patients, but it still reflects the tumor microenvironment to some extent. By stratifying PD-L1 status, gene subtypes in PD-L1 positivity-related pathological pathways were analyzed for their relationship to MSI or TMB to provide more individualized treatment options for CRCs. A total of 752 advanced CRCs were included, and their genomic variance was measured by a targeted next generation sequencing panel in this study. MSI and TMB were both measured by NGS, while PD-L1 expression level was measured using the PD-L1 colon 22C3 pharmDx kit. We found RTK/RAS pathway was positively related to high PD-L1 expression, with BRAF V600E and most KRAS mutations (G12 and G13) subtypes showing a significant correlation. Conversely, the Wnt and p53 pathways were negatively related to high PD-L1 expression, with APC C-terminal alterations and other non-inactivation mutations in TP53 making a primary contribution with significant statistical significance. Major subtypes showing a significantly higher proportion of TMB-H or MSI-H were irrespective of PD-L1 status. These findings demonstrate pathological pathways associated with high PD-L1 expression, suggesting that pathway-induced oncogenic constructive PD-L1 upregulation may be the reason for the corresponding patients' primary resistance to immune checkpoint inhibitors (ICIs), rather than a lack of pre-existing immune responses.

7.
Transl Lung Cancer Res ; 13(2): 345-354, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38496687

RESUMO

Background: To date, the role of programmed death ligand-1 (PD-L1) messenger RNA (mRNA) derived from tumor-educated platelets (TEPs) has not been well investigated in patients with advanced non-small cell lung cancer (NSCLC). A few reports have examined whether mRNA in TEPs can predict the clinical responses of patients with advanced NSCLC following immunotherapy. This study aimed to identify novel biomarkers to improve the clinical benefits and outcomes of NSCLC patients. Methods: Advanced NSCLC patients receiving a combination of immunotherapy and chemotherapy, or immunotherapy alone as a first- or second-line treatment at the Fudan University Shanghai Cancer Center were enrolled in this study. All the patients had wild-type epidermal growth factor receptor/anaplastic lymphoma kinase. The patients were enrolled in clinical trials for immune checkpoint inhibitors (ICIs), including nivolumab, pembrolizumab, atezolizumab, durvalumab, tremelimumab, and camrelizumab. Tumoral PD-L1 expression was tested by immunohistochemistry (PD-L1 22C3 pharmDx kit, Agilent, Santa Clara, CA, USA) in archived tissue samples, when available, to calculate the tumor proportion scores (TPSs). RNA and exosomal RNA of blood were isolated before immunotherapy using the Yunying RNA extraction kit (Yunying Medicine, Shanghai, China). The concentration and quality of the RNA was determined using a Qubit fluorometer (Life Technologies, Carlsbad, CA, USA). Finally, we analyzed the predictive value of TEP-derived PD-L1 mRNA expression and association with the level of the tumoral PD-L1 expression. Results: In total, 72 patients were enrolled in this study. Most of the patients were male (n=54, 75.0%), had adenocarcinoma (n=49, 68.1%). We found there was no significant correlation between the TEP-derived mRNA of PD-L1 and tumoral PD-L1 expression based on the results of the Pearson Correlation test (r=-0.19, P=0.233). Based on the median of PD-L1 mRNA, 72 patients were divided into a high PD-L1 group and a low PD-L1 group. We found that 19 patients (44.4%) responded to immunotherapy [partial response or progression-free survival (PFS) >6 months] in the high PD-L1 group, but only five patients (13.9%) responded to immunotherapy in the low PD-L1 group (P<0.01). The median PFS of the low PD-L1 group was lower than that of the high PD-L1 group (2.8 vs. 8.3 months, P<0.001). For the patients who were treated with immunotherapy alone (n=64), a similar PFS advantage was observed in the high PD-L1 group (2.8 vs. 8.0 months, P=0.002). Conclusions: This article presented the first data on TEP-derived PD-L1 mRNA in advanced NSCLC patients following immunotherapy and showed the potential advantage of using it as the surrogate biomarker for predicting the PFS and overall survival of patients following immunotherapy.

8.
iScience ; 27(6): 110079, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883836

RESUMO

Bronchoscopic-assisted discrimination of lung tumors presents challenges, especially in cases with contraindications or inaccessible lesions. Through meta-analysis and validation using the HumanMethylation450 database, this study identified methylation markers for molecular discrimination in lung tumors and designed a sequencing panel. DNA samples from 118 bronchial washing fluid (BWF) specimens underwent enrichment via multiplex PCR before targeted methylation sequencing. The Recursive Feature Elimination Cross-Validation and deep neural network algorithm established the CanDo classification model, which incorporated 11 methylation features (including 8 specific to the TBR1 gene), demonstrating a sensitivity of 98.6% and specificity of 97.8%. In contrast, bronchoscopic rapid on-site evaluation (bronchoscopic-ROSE) had lower sensitivity (87.7%) and specificity (80%). Further validation in 33 individuals confirmed CanDo's discriminatory potential, particularly in challenging cases for bronchoscopic-ROSE due to pathological complexity. CanDo serves as a valuable complement to bronchoscopy for the discriminatory diagnosis and stratified management of lung tumors utilizing BWF specimens.

9.
Cancer Res Treat ; 55(4): 1270-1280, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37114476

RESUMO

PURPOSE: Loss-of-function mutations in the adenomatous polyposis coli (APC) gene are common in metastatic colorectal cancer (mCRC). However, the characteristic of APC specific mutations in mCRC is poorly understood. Here, we explored the clinical and molecular characteristics of N-terminal and C-terminal side APC mutations in Chinese patients with mCRC. MATERIALS AND METHODS: Hybrid capture-based next-generation sequencing was performed on tumor tissues from 275 mCRC pati-ents to detect mutations in 639 tumor-associated genes. The prognostic value and gene-pathway difference between APC specific mutations in mCRC patients were analyzed. RESULTS: APC mutations were highly clustered, accounting for 73% of all mCRC patients, and most of them were truncating mutations. The tumor mutation burden of the N-terminal side APC mutations group (n=76) was significantly lower than that of the C-terminal side group (n=123) (p < 0.001), further confirmed by the public database. Survival analysis showed that mCRC patients with N-terminus side APC mutations had longer overall survival than C-terminus side. Tumor gene pathway analysis showed that gene mutations in the RTK/RAS, Wnt and transforming growth factor ß signaling pathways of the C-terminal group were significantly higher than those of the N-terminal group (p < 0.05). Additionally, KRAS, AMER1, TGFBR2, and ARID1A driver mutations were more common in patients with C-terminal side APC mutations. CONCLUSION: APC specific mutations have potential function as mCRC prognostic biomarkers. There are obvious differences in the gene mutation patterns between the C-terminus and N-terminus APC mutations group, which may have certain guiding significance for the subsequent precise treatment of mCRC.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Prognóstico , Neoplasias Colorretais/patologia , Mutação
10.
Discov Oncol ; 14(1): 89, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37273084

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive and rapidly progressive malignant tumor characterized by a poor prognosis. Chemotherapy remains the primary treatment in clinical practice; however, reliable biomarkers for predicting chemotherapy outcomes are scarce. METHODS: In this study, 78 SCLC patients were stratified into "good" or "poor" prognosis cohorts based on their overall survival (OS) following surgery and chemotherapeutic treatment. Next-generation sequencing was employed to analyze the mutation status of 315 tumorigenesis-associated genes in tumor tissues obtained from the patients. The random forest (RF) method, validated by the support vector machine (SVM), was utilized to identify single nucleotide mutations (SNVs) with predictive power. To verify the prognosis effect of SNVs, samples from the cbioportal database were utilized. RESULTS: The SVM and RF methods confirmed that 20 genes positively contributed to prognosis prediction, displaying an area under the validation curve with a value of 0.89. In the corresponding OS analysis, all patients with SDH, STAT3 and PDCD1LG2 mutations were in the poor prognosis cohort (15/15, 100%). Analysis of public databases further confirms that SDH mutations are significantly associated with worse OS. CONCLUSION: Our results provide a potential stratification of chemotherapy prognosis in SCLC patients, and have certain guiding significance for subsequent precise targeted therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA