Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
BMC Vet Res ; 19(1): 28, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721143

RESUMO

BACKGROUND: Bovine herpes virus (BoHV 1 and BoHV-5) are the causative agents of infectious bovine rhinotracheitis (IBR). IBR is responsible for important economic losses in the cattle industry. The envelope glycoprotein B (gB) is essential for BoHV infection of cattle's upper respiratory and genital tract. gB is one of the main candidate antigens for a potential recombinant vaccine since it induces a strong and persistent immune response. RESULTS: In this study, gB of BoHV-1 and BoHV-5 was characterized in terms of function, structure, and antigenicity through bioinformatics tools. gB showed conserved sequence and structure, so, both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate. The immunoinformatic study showed that these two domains have epitopes recognizable by B and T lymphocytes, followed by this, the cDNA domains from BoHV-1/5 gB (Domains-gB) were transformed into the yeast Komagataella phaffii GS115 (previously known as Pichia pastoris). A recombinant protein with molecular weight of about 110 kDa was obtained from the culture media. The vaccine candidate protein (Domains-gB) was recognized by a monoclonal antibody from a commercial ELISA kit used for IBR diagnostic, which may suggest that the epitopes are conserved of the entire infectious virus. CONCLUSION: Overall, it was shown that the recombinant domains of BoHV-1/5 gB have antigenic and immunogenic properties similar to the native gB. This vaccine candidate is promising to be used in future studies to assess its immunogenicity in an animal model.


Assuntos
Alphaherpesvirinae , Doenças dos Bovinos , Rinotraqueíte Infecciosa Bovina , Animais , Bovinos , Epitopos , Anticorpos Monoclonais , Biologia Computacional , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Glicoproteínas , Doenças dos Bovinos/prevenção & controle
2.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203536

RESUMO

Control theory, a well-established discipline in engineering and mathematics, has found novel applications in systems biology. This interdisciplinary approach leverages the principles of feedback control and regulation to gain insights into the complex dynamics of cellular and molecular networks underlying chronic diseases, including neurodegeneration. By modeling and analyzing these intricate systems, control theory provides a framework to understand the pathophysiology and identify potential therapeutic targets. Therefore, this review examines the most widely used control methods in conjunction with genomic-scale metabolic models in the steady state of the multi-omics type. According to our research, this approach involves integrating experimental data, mathematical modeling, and computational analyses to simulate and control complex biological systems. In this review, we find that the most significant application of this methodology is associated with cancer, leaving a lack of knowledge in neurodegenerative models. However, this methodology, mainly associated with the Minimal Dominant Set (MDS), has provided a starting point for identifying therapeutic targets for drug development and personalized treatment strategies, paving the way for more effective therapies.


Assuntos
Desenvolvimento de Medicamentos , Biologia de Sistemas , Genômica , Estudos Interdisciplinares
3.
Front Neuroendocrinol ; 61: 100899, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450200

RESUMO

Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimers, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Encéfalo , Humanos , Lipídeos , Aprendizado de Máquina
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269720

RESUMO

One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.


Assuntos
Ácidos Graxos , Doenças Neurodegenerativas , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/terapia , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269616

RESUMO

Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in non-adipose tissues which involves a series of pathological responses triggered after chronic exposure to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain, lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set of potential metabolites that are modulated under these experimental treatments. The study covered 3843 features involved in the exo- and endo-metabolome extracts obtained from astrocytes with the mentioned treatments. Through multivariate statistical analysis such as PCA (principal component analysis), partial least squares (PLS-DA), clustering analysis, and machine learning enrichment analysis, it was possible to determine the specific metabolites that were affected by palmitic acid insult, such as phosphoethanolamines, phosphoserines phosphocholines and glycerophosphocholines, with their respective metabolic pathways impact. Moreover, our results suggest the importance of tibolone in the generation of neuroprotective metabolites by astrocytes and may be relevant to the development of neurodegenerative processes.


Assuntos
Lipidômica , Ácido Palmítico , Astrócitos/metabolismo , Glicerofosfolipídeos/metabolismo , Humanos , Metabolômica , Norpregnenos , Ácido Palmítico/metabolismo , Ácido Palmítico/toxicidade
6.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742897

RESUMO

Excessive accumulation and release of fatty acids (FAs) in adipose and non-adipose tissue are characteristic of obesity and are associated with the leading causes of death worldwide. Chronic exposure to high concentrations of FAs such as palmitic acid (pal) is a risk factor for developing different neurodegenerative diseases (NDs) through several mechanisms. In the brain, astrocytic dysregulation plays an essential role in detrimental processes like metabolic inflammatory state, oxidative stress, endoplasmic reticulum stress, and autophagy impairment. Evidence shows that tibolone, a synthetic steroid, induces neuroprotective effects, but its molecular mechanisms upon exposure to pal remain largely unknown. Due to the capacity of identifying changes in the whole data-set of proteins and their interaction allowing a deeper understanding, we used a proteomic approach on normal human astrocytes under supraphysiological levels of pal as a model to induce cytotoxicity, finding changes of expression in proteins related to translation, transport, autophagy, and apoptosis. Additionally, tibolone pre-treatment showed protective effects by restoring those same pal-altered processes and increasing the expression of proteins from cell survival processes. Interestingly, ARF3 and IPO7 were identified as relevant proteins, presenting a high weight in the protein-protein interaction network and significant differences in expression levels. These proteins are related to transport and translation processes, and their expression was restored by tibolone. This work suggests that the damage caused by pal in astrocytes simultaneously involves different mechanisms that the tibolone can partially revert, making tibolone interesting for further research to understand how to modulate these damages.


Assuntos
Astrócitos , Ácido Palmítico , Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Norpregnenos , Ácido Palmítico/farmacologia , Biossíntese de Proteínas , Proteômica
7.
Neuroendocrinology ; 108(2): 142-160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30391959

RESUMO

Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Estrogênios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de Estrogênio/metabolismo , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Estrogênios/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia
8.
Mol Genet Metab ; 117(2): 129-39, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26276570

RESUMO

Mucopolysaccharidosis (MPS) is a group of lysosomal storage diseases (LSD), characterized by the deficiency of a lysosomal enzyme responsible for the degradation of glycosaminoglycans (GAG). This deficiency leads to the lysosomal accumulation of partially degraded GAG. Nevertheless, deficiency of a single lysosomal enzyme has been associated with impairment in other cell mechanism, such as apoptosis and redox balance. Although GAG analysis represents the main biomarker for MPS diagnosis, it has several limitations that can lead to a misdiagnosis, whereby the identification of new biomarkers represents an important issue for MPS. In this study, we used a system biology approach, through the use of a genome-scale human metabolic reconstruction to understand the effect of metabolism alterations in cell homeostasis and to identify potential new biomarkers in MPS. In-silico MPS models were generated by silencing of MPS-related enzymes, and were analyzed through a flux balance and variability analysis. We found that MPS models used approximately 2286 reactions to satisfy the objective function. Impaired reactions were mainly involved in cellular respiration, mitochondrial process, amino acid and lipid metabolism, and ion exchange. Metabolic changes were similar for MPS I and II, and MPS III A to C; while the remaining MPS showed unique metabolic profiles. Eight and thirteen potential high-confidence biomarkers were identified for MPS IVB and VII, respectively, which were associated with the secondary pathologic process of LSD. In vivo evaluation of predicted intermediate confidence biomarkers (ß-hexosaminidase and ß-glucoronidase) for MPS IVA and VI correlated with the in-silico prediction. These results show the potential of a computational human metabolic reconstruction to understand the molecular mechanisms this group of diseases, which can be used to identify new biomarkers for MPS.


Assuntos
Mucopolissacaridoses/metabolismo , Biomarcadores/metabolismo , Simulação por Computador , Células HEK293 , Humanos , Leucócitos Mononucleares/enzimologia , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Biologia de Sistemas , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Int J Neurosci ; 125(5): 315-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25051426

RESUMO

N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Humanos
10.
J Theor Biol ; 345: 43-51, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24361327

RESUMO

GRP78 participates in multiple functions in the cell during normal and pathological conditions, controlling calcium homeostasis, protein folding and Unfolded Protein Response. GRP78 is located in the endoplasmic reticulum, but it can change its location under stress, hypoxic and apoptotic conditions. NF-κB represents the keystone of the inflammatory process and regulates the transcription of several genes related with apoptosis, differentiation, and cell growth. The possible relationship between GRP78-NF-κB could support and explain several mechanisms that may regulate a variety of cell functions, especially following brain injuries. Although several reports show interactions between NF-κB and Heat Shock Proteins family members, there is a lack of information on how GRP78 may be interacting with NF-κB, and possibly regulating its downstream activation. Therefore, we assessed the computational predictions of the GRP78 (Chain A) and NF-κB complex (IkB alpha and p65) protein-protein interactions. The interaction interface of the docking model showed that the amino acids ASN 47, GLU 215, GLY 403 of GRP78 and THR 54, ASN 182 and HIS 184 of NF-κB are key residues involved in the docking. The electrostatic field between GRP78-NF-κB interfaces and Molecular Dynamic simulations support the possible interaction between the proteins. In conclusion, this work shed some light in the possible GRP78-NF-κB complex indicating key residues in this crosstalk, which may be used as an input for better drug design strategy targeting NF-κB downstream signaling as a new therapeutic approach following brain injuries.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Biologia Computacional/métodos , Chaperona BiP do Retículo Endoplasmático , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Mapeamento de Interação de Proteínas/métodos , Eletricidade Estática
11.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794218

RESUMO

Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.

12.
Cell Biol Int ; 37(6): 521-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23494837

RESUMO

Glucose-regulated protein 78 (GRP78; 78 kDa) belongs to a group of highly conserved heat shock proteins (Hsp) with important functions at the cellular level. The emerging interest for GRP78 relies on its different functions, both in normal and pathological circumstances. GRP78 regulates intracellular calcium, protein shaping, endoplasmic reticulum (ER) stress and cell survival by an immediate response to insults, and that its expression may also be regulated by estrogens. Although these roles are well explored, the mechanisms by which GRP78 induces these changes are not completely understood. In this review, we highlight various aspects related to the GRP78 functioning in cellular protection and repair in response to ER stress and unfolded protein response by the regulation of intracellular Ca(2+) and other mechanisms. In this respect, the novel interactions between GRP78 and estrogens, such as estradiol and others, are analyzed in the context of the central nervous system (CNS). We also discuss the importance of GRP78 and estrogens in brain diseases including ischemia, Alzheimer's and Huntington's disorders. Finally, the main protective mechanisms of GRP78 and estrogens during ER dysfunction in the brain are described, and the prospective roles of GRP78 in therapeutic processes.


Assuntos
Encéfalo/metabolismo , Estrogênios/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos
13.
Biomed Pharmacother ; 165: 115089, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418975

RESUMO

Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3ß-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and ß metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Farmacologia em Rede , Feminino , Humanos , Estrogênios/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico
14.
Mol Neurobiol ; 60(8): 4842-4854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37184765

RESUMO

Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.


Assuntos
Interferon Tipo I , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Antivirais/farmacologia , Astrócitos/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Ácidos Graxos/metabolismo , Colesterol/metabolismo
15.
Front Neurosci ; 17: 1195840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027526

RESUMO

Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-ß signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.

16.
J Theor Biol ; 315: 53-63, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22995823

RESUMO

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disorder characterized mainly by a progressive loss of motor neurons. Glutamate excitotoxicity is likely the main cause of neuronal death, and Riluzole interferes with glutamate-mediated transmission. Thus, in such independent pathway, these effects may be partly due to inactivation of voltage-dependent sodium channels. Here we predict the structural model of the interaction and report the possible binding sites of Riluzole on Nav1.6 channel. The docked complexes were subjected to minimization and we further investigated the key interacting residues, binding free energies, pairing bridge determination, folding pattern, hydrogen bounding formation, hydrophobic contacts and flexibilities. Our results demonstrate that Riluzole interacts with the Nav1.6 channel, more specifically in the key residues TYR 1787, LEU 1843 and GLN 1799, suggesting possible cellular implications driven by these amino acids on Riluzole-Nav1.6 interaction, which may serve as an important output for a more specific and experimental drug design therapy against ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Riluzol/metabolismo , Riluzol/uso terapêutico , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Humanos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.6/química , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Reprodutibilidade dos Testes , Riluzol/química , Alinhamento de Sequência , Software , Solventes , Homologia Estrutural de Proteína
17.
Nutr Neurosci ; 15(3): 120-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22732354

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the degeneration and progressive loss of dopaminergic neurons in the substantia nigra pars compacta. It has been suggested that oxidative stress plays a role in the etiology and progression of PD. For instance, low levels of endogenous antioxidants, increased reactive species, augmented dopamine oxidation, and high iron levels have been found in brains from PD patients. In vitro and in vivo studies of Parkinson models evaluating natural and endogenous antioxidants such as polyphenols, coenzyme Q10, and vitamins A, C, and E have shown protective effects against oxidative-induced neuronal death. In this paper, we will review the mechanisms by which polyphenols and endogenous antioxidants can produce protection. Some of the mechanisms reviewed include: scavenging nitrogen and oxygen reactive species, regulation of signaling pathways associated with cell survival and inflammation, and inhibition of synphilin-1 and alpha-synuclein aggregation.


Assuntos
Antioxidantes/farmacologia , Doença de Parkinson/tratamento farmacológico , Polifenóis/farmacologia , Animais , Ácido Ascórbico/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Vitamina A/farmacologia , Vitamina E/farmacologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Nutr Neurosci ; 15(1): 1-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22305647

RESUMO

Polyphenols are secondary metabolites with antioxidant properties and are abundant in the diet. Fruits, vegetables, herbs, and various drinks (tea, wine, and juices) are all sources of these molecules. Despite their abundance, investigations into the benefits of polyphenols in human health have only recently begun. Phenolic compounds have received increasing interest because of numerous epidemiological studies. These studies have suggested associations between the consumption of polyphenol-rich aliments and the prevention of chronic diseases, such as cancer, cardiovascular diseases, and neurodegenerative diseases. More specifically, in the last 10 years literature on the neuroprotective effects of a polyphenol-rich diet has grown considerably. It has been demonstrated, in various cell culture and animal models, that these metabolites are able to protect neuronal cells by attenuating oxidative stress and damage. However, it remains unclear as to how these compounds reach the brain, what concentrations are necessary, and what biologically active forms are needed to exert beneficial effects. Therefore, further research is needed to identify the molecular pathways and intracellular targets responsible for polyphenol's neuroprotective effects. The aim of this paper is to present various well-known dietary polyphenols and their mechanisms of neuroprotection with an emphasis on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Antioxidantes/metabolismo , Dieta , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/prevenção & controle , Esclerose Lateral Amiotrófica/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Polifenóis/metabolismo
19.
Int J Neurosci ; 122(5): 223-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22176297

RESUMO

Brain injury leads to inflammation, stress, and cell death. Neurons are more susceptible to injury than astrocytes, as they have limited antioxidant capacity, and rely heavily on their metabolic coupling with astrocytes to combat oxidative stress. Both normally and after brain injury, astrocytes support neurons by providing antioxidant protection, substrates for neuronal metabolism, and glutamate clearance. Although astrocytes are generally more resilient than neurons after injury, severe damage also results in astrocyte dysfunction, leading to increased neuronal death. This mini review provides a very insightful and brief overview on a few examples of promising neuroprotective compounds targeting astrocyte function, with specific attention on how these treatments alter astrocyte response or viability, and how this may be critical for neuronal survival following brain injury.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Astrócitos/patologia , Lesões Encefálicas/patologia , Humanos , Neurônios/patologia , Falha de Tratamento
20.
Int Immunopharmacol ; 108: 108721, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35344815

RESUMO

BACKGROUND: Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS: In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS: We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.


Assuntos
Lesões Encefálicas Traumáticas , Di-Hidrotestosterona , Androgênios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/uso terapêutico , Humanos , Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inflamação , Proteínas Mitocondriais/uso terapêutico , PPAR gama , Proibitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA