Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339018

RESUMO

Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1ß-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders.


Assuntos
Echinacea , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta , Anti-Inflamatórios/farmacologia , Colo
2.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298682

RESUMO

Cancer is among the most serious health problems and the second leading cause of death globally, affecting millions of people worldwide [...].


Assuntos
Neoplasias da Mama , Humanos , Feminino , Dieta
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499424

RESUMO

trans-Resveratrol can be catabolized by the gut microbiota to dihydroresveratrol, 3,4'-dihydroxy-trans-stilbene, lunularin, and 4-hydroxydibenzyl. These metabolites can reach relevant concentrations in the colon. However, not all individuals metabolize RSV equally, as it depends on their RSV gut microbiota metabotype (i.e., lunularin producers vs. non-producers). However, how this microbial metabolism affects the cancer chemopreventive activity of stilbenes and their microbial metabolites is poorly known. We investigated the structure-antiproliferative activity relationship of dietary stilbenes, their gut microbial metabolites, and various analogs in human cancer (Caco-2 and HT-29) and non-tumorigenic (CCD18-Co) colon cells. The antiproliferative IC50 values of pterostilbene, oxy-resveratrol, piceatannol, resveratrol, dihydroresveratrol, lunularin, 3,4'-dihydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 4-hydroxy-trans-stilbene, 4-hydroxydibenzyl, 3-hydroxydibenzyl, and 4-trans-stilbenemethanol were calculated. IC50 values were correlated with 34 molecular characteristics by bi- and multivariate analysis. Little or no activity on CCD18-Co was observed, while Caco-2 was more sensitive than HT-29, which was explained by their different capacities to metabolize the compounds. Caco-2 IC50 values ranged from 11.4 ± 10.1 µM (4-hydroxy-trans-stilbene) to 73.9 ± 13.8 µM (dihydropinosylvin). In HT-29, the values ranged from 24.4 ± 11.3 µM (4-hydroxy-trans-stilbene) to 96.7 ± 6.7 µM (4-hydroxydibenzyl). At their IC50, most compounds induced apoptosis and arrested the cell cycle at the S phase, pterostilbene at G2/M, while 4-hydroxy-trans-stilbene and 3,4'-dihydroxy-trans-stilbene arrested at both phases. Higher Connolly values (larger size) hindered the antiproliferative activity, while a lower pKa1 enhanced the activity in Caco-2, and higher LogP values (more hydrophobicity) increased the activity in HT-29. Reducing the styrene double bond in stilbenes was the most critical feature in decreasing the antiproliferative activity. These results (i) suggest that gut microbiota metabolism determines the antiproliferative effects of dietary stilbenes. Therefore, RSV consumption might exert different effects in individuals depending on their gut microbiota metabotypes associated with RSV metabolism, and (ii) could help design customized drugs with a stilbenoid and (or) dibenzyl core against colorectal cancer.


Assuntos
Neoplasias do Colo , Microbioma Gastrointestinal , Estilbenos , Humanos , Células CACO-2 , Estilbenos/química , Resveratrol/farmacologia , Neoplasias do Colo/tratamento farmacológico , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270004

RESUMO

Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells' ABC-mediated chemoresistance.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Exossomos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Feminino , Humanos , Leite , Polifenóis/farmacologia , Ratos , Resveratrol/farmacologia , Resveratrol/uso terapêutico
5.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360703

RESUMO

5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1ß), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Humanos , Fenóis/farmacologia
6.
Eur J Nutr ; 59(4): 1329-1343, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32052147

RESUMO

PURPOSE: (Poly)phenols have been reported to confer protective effects against type 2 diabetes but the precise association remains elusive. This meta-analysis aimed to assess the effects of (poly)phenol intake on well-established biomarkers in people with type 2 diabetes or at risk of developing diabetes. METHODS: A systematic search was conducted using the following selection criteria: (1) human randomized controlled trials involving individuals with prediabetes and type 2 diabetes; (2) one or more of the following biomarkers: glucose, glycated haemoglobin (HbA1c), insulin, pro-insulin, homeostatic model assessment of insulin resistance (HOMA-IR), islet amyloid polypeptide (IAPP)/amylin, pro-IAPP/pro-amylin, glucagon, C-peptide; (3) chronic intervention with pure or enriched mixtures of (poly)phenols. From 488 references, 88 were assessed for eligibility; data were extracted from 27 studies and 20 were used for meta-analysis. The groups included in the meta-analysis were: (poly)phenol mixtures, isoflavones, flavanols, anthocyanins and resveratrol. RESULTS: Estimated intervention/control mean differences evidenced that, overall, the consumption of (poly)phenols contributed to reduced fasting glucose levels (- 3.32 mg/dL; 95% CI - 5.86, - 0.77; P = 0.011). Hb1Ac was only slightly reduced (- 0.24%; 95% CI - 0.43, - 0.044; P = 0.016) whereas the levels of insulin and HOMA-IR were not altered. Subgroup comparative analyses indicated a stronger effect on blood glucose in individuals with diabetes (- 5.86 mg/dL, 95% CI - 11.34, - 0.39; P = 0.036) and this effect was even stronger in individuals taking anti-diabetic medication (- 10.17 mg/dL, 95% CI - 16.59, - 3.75; P = 0.002). CONCLUSIONS: Our results support that the consumption of (poly)phenols may contribute to lower glucose levels in individuals with type 2 diabetes or at risk of diabetes and that these compounds may also act in combination with anti-diabetic drugs.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/sangue , Hipoglicemiantes/uso terapêutico , Fenóis/sangue , Fenóis/uso terapêutico , Biomarcadores/sangue , Terapia Combinada/métodos , Humanos , Polifenóis/sangue , Polifenóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784973

RESUMO

Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related death in adult women worldwide. Over 85% of BC cases are non-hereditary, caused by modifiable extrinsic factors related to lifestyle, including dietary habits, which play a crucial role in cancer prevention. Although many epidemiological and observational studies have inversely correlated the fruit and vegetable consumption with the BC incidence, the involvement of their phenolic content in this correlation remains contradictory. During decades, wrong approaches that did not consider the bioavailability, metabolism, and breast tissue distribution of dietary phenolics persist behind the large currently existing gap between preclinical and clinical research. In the present review, we provide comprehensive preclinical and clinical evidence according to physiologically relevant in vitro and in vivo studies. Some dietary phenolics such as resveratrol (RSV), quercetin, isoflavones, epigallocatechin gallate (EGCG), lignans, and curcumin are gaining attention for their chemopreventive properties in preclinical research. However, the clinical evidence of dietary phenolics as BC chemopreventive compounds is still inconclusive. Therefore, the only way to validate promising preclinical results is to conduct clinical trials in BC patients. In this regard, future perspectives on dietary phenolics and BC research are also critically discussed.


Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias da Mama/prevenção & controle , Quimioprevenção/métodos , Suplementos Nutricionais , Flavonoides/uso terapêutico , Fenóis/uso terapêutico , Animais , Anticarcinógenos/farmacocinética , Disponibilidade Biológica , Neoplasias da Mama/epidemiologia , Ensaios Clínicos como Assunto , Dieta , Modelos Animais de Doenças , Feminino , Flavonoides/farmacocinética , Humanos , Incidência , Fenóis/farmacocinética
8.
Eur J Nutr ; 58(Suppl 2): 37-47, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31492975

RESUMO

PURPOSE: Evidence exists regarding the beneficial effects of diets rich in plant-based foods regarding the prevention of cardiometabolic diseases. These plant-based foods are an exclusive and abundant source of a variety of biologically active phytochemicals, including polyphenols, carotenoids, glucosinolates and phytosterols, with known health-promoting effects through a wide range of biological activities, such as improvements in endothelial function, platelet function, blood pressure, blood lipid profile and insulin sensitivity. We know that an individual's physical/genetic makeup may influence their response to a dietary intervention, and thereby may influence the benefit/risk associated with consumption of a particular dietary constituent. This inter-individual variation in responsiveness has also been described for dietary plant bioactives but has not been explored in depth. To address this issue, the European scientific experts involved in the COST Action POSITIVe systematically analyzed data from published studies to assess the inter-individual variation in selected clinical biomarkers associated with cardiometabolic risk, in response to the consumption of plant-based bioactives (poly)phenols and phytosterols. The present review summarizes the main findings resulting from the meta-analyses already completed. RESULTS: Meta-analyses of randomized controlled trials conducted within POSITIVe suggest that age, sex, ethnicity, pathophysiological status and medication may be responsible for the heterogeneity in the biological responsiveness to (poly)phenol and phytosterol consumption and could lead to inconclusive results in some clinical trials aiming to demonstrate the health effects of specific dietary bioactive compounds. However, the contribution of these factors is not yet demonstrated consistently across all polyphenolic groups and cardiometabolic outcomes, partly due to the heterogeneity in trial designs, low granularity of data reporting, variety of food vectors and target populations, suggesting the need to implement more stringent reporting practices in the future studies. Studies investigating the effects of genetic background or gut microbiome on variability were limited and should be considered in future studies. CONCLUSION: Understanding why some bioactive plant compounds work effectively in some individuals but not, or less, in others is crucial for a full consideration of these compounds in future strategies of personalized nutrition for a better prevention of cardiometabolic disease. However, there is also still a need for the development of a substantial evidence-base to develop health strategies, food products or lifestyle solutions that embrace this variability.


Assuntos
Sistema Cardiovascular/metabolismo , Dieta Vegetariana/métodos , Metabolômica/métodos , Fitosteróis/metabolismo , Plantas Comestíveis/metabolismo , Polifenóis/metabolismo , Variação Biológica da População/fisiologia , Dieta Vegetariana/tendências , Europa (Continente) , Humanos
9.
Eur J Nutr ; 58(Suppl 2): 49-64, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31492976

RESUMO

PURPOSE: The quality of the study design and data reporting in human trials dealing with the inter-individual variability in response to the consumption of plant bioactives is, in general, low. There is a lack of recommendations supporting the scientific community on this topic. This study aimed at developing a quality index to assist the assessment of the reporting quality of intervention trials addressing the inter-individual variability in response to plant bioactive consumption. Recommendations for better designing and reporting studies were discussed. METHODS: The selection of the parameters used for the development of the quality index was carried out in agreement with the scientific community through a survey. Parameters were defined, grouped into categories, and scored for different quality levels. The applicability of the scoring system was tested in terms of consistency and effort, and its validity was assessed by comparison with a simultaneous evaluation by experts' criteria. RESULTS: The "POSITIVe quality index" included 11 reporting criteria grouped into four categories (Statistics, Reporting, Data presentation, and Individual data availability). It was supported by detailed definitions and guidance for their scoring. The quality index score was tested, and the index demonstrated to be valid, reliable, and responsive. CONCLUSIONS: The evaluation of the reporting quality of studies addressing inter-individual variability in response to plant bioactives highlighted the aspects requiring major improvements. Specific tools and recommendations favoring a complete and transparent reporting on inter-individual variability have been provided to support the scientific community on this field.


Assuntos
Variação Biológica da População/fisiologia , Confiabilidade dos Dados , Dieta Vegetariana/métodos , Compostos Fitoquímicos/farmacologia , Projetos de Pesquisa , Dieta Vegetariana/tendências , Humanos , Compostos Fitoquímicos/administração & dosagem , Plantas Comestíveis , Reprodutibilidade dos Testes
10.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495642

RESUMO

Understanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.


Assuntos
Antocianinas/química , Antocianinas/farmacologia , Biomarcadores , Dieta , Metabolismo Energético/efeitos dos fármacos , Alimentos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Miocárdio/metabolismo , Antocianinas/efeitos adversos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Taninos Hidrolisáveis/efeitos adversos , Fatores de Risco
11.
Eur J Nutr ; 56(2): 831-841, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26680596

RESUMO

PURPOSE: Urolithins, metabolites produced by the gut microbiota from ellagic acid, have been acknowledged with cancer chemopreventive activity. Although urolithin A (Uro-A) has been reported to be the most active one, 10-50 % of humans can also produce the isomer isourolithin A (IsoUro-A). However, no biological activity for IsoUro-A has been reported so far. Herein, we describe for the first time the antiproliferative effect of IsoUro-A, compared to Uro-A, against both human colon cancer (Caco-2) and normal (CCD18-Co) cell lines. METHODS: Cell proliferation was evaluated by MTT and Trypan blue exclusion assays. Cell cycle was analyzed by flow cytometry and apoptosis measured by the Annexin V/PI method. Finally, urolithins metabolism was analyzed by HPLC-DAD-MS/MS. RESULTS: IsoUro-A inhibited the proliferation of Caco-2 cells in a time- and dose-dependent manner, though it was significantly lower than Uro-A (IC50 = 69.7 ± 4.5 and 49.2 ± 3.8 µM at 48 h, respectively). Both urolithins arrested Caco-2 cell cycle at S and G2/M phases and induced apoptosis at concentrations previously found in human colon tissues. Notably, Caco-2 cells glucuronidated more efficiently IsoUro-A than Uro-A (~50 vs. ~20 % of conversion after 48 h, respectively). Both Uro-A and IsoUro-A glucuronides did not exert antiproliferative effects. In addition, cell growth inhibition was higher in Caco-2 than in normal cells. CONCLUSIONS: IsoUro-A exerts strong antiproliferative activity, which is reduced by the extensive glucuronidation at 9-position in cancer cells. Further studies are needed to elucidate whether the in vitro structure-activity relationship found for Uro-A and IsoUro-A plays any role in humans.


Assuntos
Anticarcinógenos/metabolismo , Apoptose , Colo/metabolismo , Neoplasias do Colo/metabolismo , Cumarínicos/metabolismo , Mucosa Intestinal/metabolismo , Anticarcinógenos/efeitos adversos , Anticarcinógenos/química , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colo/citologia , Colo/patologia , Neoplasias do Colo/patologia , Cumarínicos/efeitos adversos , Cumarínicos/química , Fase G2 , Glucuronídeos/química , Glucuronídeos/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Isomerismo , Cinética , Estrutura Molecular , Fase S
12.
Inorg Chem Commun ; 64: 45-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752972

RESUMO

A novel complex, [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIα, which may account for the observed anti-cancer effects.

13.
J Mol Struct ; 1121: 156-166, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27980346

RESUMO

We have synthesized a trio of gallium complexes bearing 9-anthraldehyde thiosemicarbazones. The complexes were assessed for their anticancer activity and their biophysical reactivity was also investigated. The three complexes displayed good cytotoxic profiles against two human colon cancer cell lines, HCT-116 and Caco-2. The IC50 ranged from 4.7 - 44.1 µM with the complex having an unsubstituted amino group on the thiosemicarbazone being the most active. This particular complex also showed a high therapeutic index. All three complexes bind strongly to DNA via intercalation with binding constants ranging from 7.46 × 104 M-1 to 3.25 × 105 M-1. The strength of the binding cannot be directly related to the level of anticancer activity. The complexes also bind strongly to human serum albumin with binding constants on the order of 104 - 105 M-1 as well. The complexes act as chemical nucleases as evidenced by their ability to cleave pBR322 plasmid DNA. The binding constants along with the cleavage results may suggest that the extent of DNA interaction is not directly correlated with anticancer activity. The results of docking studies with DNA, ribonucleotide reductase and human serum albumin, however showed that the complex with the best biological activity had the largest binding constant to DNA.

14.
J Pharmacol Exp Ther ; 353(2): 433-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758919

RESUMO

Ellagic acid (EA) and some derivatives have been reported to inhibit cancer cell proliferation, induce cell cycle arrest, and modulate some important cellular processes related to cancer. This study aimed to identify possible structure-activity relationships of EA and some in vivo derivatives in their antiproliferative effect on both human colon cancer and normal cells, and to compare this activity with that of other polyphenols. Our results showed that 4,4'-di-O-methylellagic acid (4,4'-DiOMEA) was the most effective compound in the inhibition of colon cancer cell proliferation. 4,4'-DiOMEA was 13-fold more effective than other compounds of the same family. In addition, 4,4'-DiOMEA was very active against colon cancer cells resistant to the chemotherapeutic agent 5-fluoracil, whereas no effect was observed in nonmalignant colon cells. Moreover, no correlation between antiproliferative and antioxidant activities was found, further supporting that structure differences might result in dissimilar molecular targets involved in their differential effects. Finally, microarray analysis revealed that 4,4'-DiOMEA modulated Wnt signaling, which might be involved in the potential antitumor action of this compound. Our results suggest that structural-activity differences between EA and 4,4'-DiOMEA might constitute the basis for a new strategy in anticancer drug discovery based on these chemical modifications.


Assuntos
Anticarcinógenos/química , Anticarcinógenos/farmacologia , Neoplasias do Colo/patologia , Ácido Elágico/análogos & derivados , Ácido Elágico/química , Ácido Elágico/farmacologia , Proteínas Wnt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Humanos , Via de Sinalização Wnt/efeitos dos fármacos
15.
Eur J Nutr ; 53(3): 853-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24077694

RESUMO

PURPOSE: Urolithins, gut microbiota metabolites derived from ellagic acid and ellagitannins, reach micromolar concentrations in the colon lumen where can have anti-inflammatory and anticancer effects. The antiproliferative activity of urolithins (Uro-A, Uro-B, Uro-C and Uro-D) and their most relevant in vivo glucuronides were evaluated in three human colon cancer cell lines (Caco-2, SW480 and HT-29). METHODS: Cell proliferation was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and Trypan blue exclusion assays. Cell cycle was evaluated by flow cytometry and urolithins metabolism by HPLC­MS/MS. RESULTS: Urolithins inhibited cell proliferation and cell cycle progression in a time- and dose-dependent manner and arrested the cells at S and G2/M phases, depending on the urolithin. Uro-A exerted the highest antiproliferative activity, followed by Uro-C, Uro-D and Uro-B. Unlike Caco-2 and SW480 cells, HT-29 cells partially overcame the effects after 48 h, which was related to the complete glucuronidation of urolithins. Uro-A or Uro-B glucuronides did not affect cell cycle and showed lower antiproliferative activity than their aglycone counterparts. Uro-A or Uro-B plus inhibitors of drug efflux ABC transporters partially prevented the glucuronidation of urolithins in HT-29 cells which became more sensitive. CONCLUSIONS: Uro-A, Uro-B, Uro-C and Uro-D exerted different antiproliferative effects depending on the colon cancer cell line. We also report here, for the first time, the role of ABC transporters and Phase-II metabolism in HT-29 cells as a mechanism of cancer resistance against urolithins due to their conversion to glucuronide conjugates that exerted lower antiproliferative activity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Cumarínicos/farmacologia , Taninos Hidrolisáveis/farmacologia , Desintoxicação Metabólica Fase II , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios não Esteroides/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/metabolismo , Cumarínicos/antagonistas & inibidores , Cumarínicos/química , Cumarínicos/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Glucuronídeos/química , Glucuronídeos/metabolismo , Humanos , Taninos Hidrolisáveis/antagonistas & inibidores , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Cinética , Moduladores de Transporte de Membrana/farmacologia , Fase S/efeitos dos fármacos
16.
Antioxidants (Basel) ; 13(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790667

RESUMO

Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders.

17.
Bioorg Med Chem Lett ; 23(19): 5329-31, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953195

RESUMO

Simple and efficient synthesis of quebecol and a number of its analogs was accomplished in five steps. The synthesized compounds were evaluated for antiproliferative activities against human cervix adenocarcinoma (HeLa), human ovarian carcinoma (SK-OV-3), human colon carcinoma (HT-29), and human breast adenocarcinoma (MCF-7) cancer cell lines. Among all the compounds, 7c, 7d, 7f, and 8f exhibited antiproliferative activities against four tested cell lines with inhibition over 80% at 75 µM after 72 h, whereas, compound 7b and 7g were more selective towards MCF-7 cell line. The IC50 values for compounds 7c, 7d, and 7f were 85.1 µM, 78.7 µM, and 80.6 µM against MCF-7 cell line, respectively, showing slightly higher antiproliferative activtiy than the synthesized and isolated quebecol with an IC50 value of 104.2 µM against MCF-7.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Guaiacol/análogos & derivados , Propanóis/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Guaiacol/síntese química , Guaiacol/química , Guaiacol/farmacologia , Células HeLa , Humanos , Concentração Inibidora 50 , Neoplasias/tratamento farmacológico , Propanóis/síntese química , Propanóis/farmacologia , Relação Estrutura-Atividade
18.
Food Funct ; 14(1): 15-31, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525310

RESUMO

Effective strategies in prolonging life- and health span are increasingly recognized as acting as mild stressors. Micronutrients and other dietary compounds such as (poly)phenols may act as moderate stressors and confer protective effects via a preconditioning phenomenon. (Poly)phenols and their metabolites may not need to reach their target cells to produce biologically significant responses, so that cells exposed to it at entry points may communicate signals to other cells. One of such "communication" mechanisms could occur through extracellular vesicles, including exosomes. In vitro loading of exosomes with (poly)phenols has been used to achieve targeted exosome homing. However, it is unknown if similar shuttling phenomena occur in vivo upon (poly)phenols consumption. Alternatively, exposure to (poly)phenols might trigger responses in exposed organs, which can subsequently signal to cells distant from exposure sites via exosomes. The currently available studies favor indirect effects of (poly)phenols, tempting to suggest a "billiard-like" or "domino-like" propagating effect mediated by quantitative and qualitative changes in exosomes triggered by (poly)phenols. In this review, we discuss the limited current data available on how (poly)phenols exposure can potentially modify exosomes activity, highlighting major questions regarding how (epi)genetic, physiological, and gut microbiota factors can modulate and be modulated by the putative exosome-(poly)phenolic compound interplay that still remains to be fully understood.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , Vesículas Extracelulares/metabolismo , Dieta
19.
Mol Aspects Med ; 89: 101109, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35940941

RESUMO

Ellagitannins (ETs) and ellagic acid (EA) are dietary polyphenols poorly absorbed but extensively metabolized by the human gut microbiota to produce different urolithins (Uros). Depending on the individuals' microbial signatures, ETs metabolism can yield the Uro metabotypes A, B, or 0, potentially impacting human health after consuming ETs. Human evidence points to improved brain health after consuming ET-rich foods, mainly pomegranate juices and extracts containing punicalagin, punicalin, and different EA-derivatives. Although ETs and (or) EA are necessary to exert the effects, the precise mechanism, actual metabolites, or final drivers responsible for the observed effects have not been unraveled. The cause-and-effect evidence on Uro-A administration and the improvement of animal brain health is consistent but not addressed in humans. The Uro-A's in vivo anti-inflammatory, mitophagy, autophagy, and mitochondrial biogenesis activities suggest it as a possible final driver in neuroprotection. However, the precise Uro metabolic forms reaching the brain are unknown. In addition to the possible participation of direct effectors in brain tissues, the current evidence points out that improving blood flow, gut microbiota ecology, and gut barrier by ET-rich foods and (or) Uro-A could contribute to the neuroprotective effects. We show here the current human evidence on ETs and brain health, the possible link between the gut microbiota metabolism of ETs and their effects, including the preservation of the gut barrier integrity, and the possible role of Uros. Finally, we propose a roadmap to address what is missing on ETs, Uros, and neuroprotection.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Neuroproteção , Anti-Inflamatórios/metabolismo
20.
Food Funct ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078511

RESUMO

Current knowledge indicates that the consumption of isoflavone-rich foodstuffs can have a beneficial impact on cardiovascular health. To what extent these isoflavones act as the main actors of that benefit is less clear. Genistein (GEN), daidzein (DAZ), and the DAZ-derived microbial metabolite equol (Eq) exhibit antiangiogenic effects in vitro, but their low bloodstream concentrations make it difficult to rationalize the in vivo effects. Their derived phase-II metabolites (glucuronides and sulfates) are major metabolites found in plasma, but their role as antiangiogenic molecules remains unexplored. We aimed here to first assess the anti-angiogenic activities of the main circulating isoflavone metabolites (glucuronides and sulfates) and compare them with their corresponding free forms at physiological concentrations (0.1-10 µM). The effects of the conjugated vs. free forms on tubulogenesis, cell migration, and VEGF-induced signalling were investigated in primary human aortic endothelial cells (HAECs). While (R,S)-equol 7-ß-D-glucuronide (Eq 7-glur) exerted dose-dependent inhibition of tubulogenesis and endothelial migration comparable to that exerted by the free forms (GEN, DAZ, and Eq), the rest of the phase-II conjugates exhibited no significant effects. The underlying molecular mechanisms were independent of the bFGF but related to the modulation of the VEGF pathway. Besides, the observed dissimilar cellular metabolism (conjugation/deconjugation) places the phase-II metabolites as precursors of the free forms; however, the question of whether this metabolism impacts their biological activity requires additional studies. These new insights suggest that isoflavones and their circulating metabolites, including Eq 7-glur, may be involved in cardiovascular health (e.g., targeting angiogenesis).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA