Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Pathol ; 194(7): 1171-1184, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548268

RESUMO

Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor ß1 (TGF-ß1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-ß1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-ß1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-ß1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.


Assuntos
Movimento Celular , Fibrose , Integrinas , Pericitos , Escleroderma Sistêmico , Fator de Crescimento Transformador beta1 , Pericitos/metabolismo , Pericitos/patologia , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Integrinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Microvasos/patologia , Microvasos/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Pele/patologia , Pele/metabolismo , Pele/irrigação sanguínea
2.
Kidney Int ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797325

RESUMO

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.

3.
FASEB J ; 35(2): e21311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417253

RESUMO

Neuroblasts have a clustered phenotype critical for their unidirectional migration, which in part is dependent on signaling from microvascular endothelial cells (EC) and pericytes (PC). Diffusible signals secreted by vascular cells have been demonstrated to increase survival, proliferation, and differentiation of subventricular zone resident neural stem cells (NSC); however, the signals that promote the necessary initiating step of NSC clustering are undefined. To investigate the role of vascular cells in promoting NSC clustering and directing migration, we created a 3-D hydrogel that mimics the biomechanics, biochemistry, and architectural complexity of brain tissue. We demonstrate that EC, and not PC, have a crucial role in NSC clustering and migration, further verified through microfluidic chamber systems and traction force microscopy. Ablation of the extended NSC aggregate arm halts aggregate movement, suggesting that clustering is a prerequisite for migration. When cultured with EC, NSC clustering occurs and NSC coincidentally increase their expression of N-cadherin, as compared to NSC cultured alone. NSC-presented N-cadherin expression was increased following exposure to EC secreted metalloproteinase-2 (MMP2). We demonstrate that inhibition of MMP2 prevented NSC N-cadherin surface expression and subsequent NSC clustering, even when NSC were in direct contact with EC. Furthermore, with exogenous activation of EGFR, which serves as a downstream activator of N-cadherin cleavage, NSC form clusters. Our results suggest that EC secretion of MMP2 promotes NSC clustering through N-cadherin expression. The insight gained about the mechanisms by which EC promote NSC migration may enhance NSC therapeutic response to sites of injury.


Assuntos
Caderinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Caderinas/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hidrogéis/química , Metaloproteinase 2 da Matriz/genética , Camundongos
4.
Microcirculation ; 28(3): e12661, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33025626

RESUMO

Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.


Assuntos
Nefropatias , Microcirculação , Fibrose , Humanos , Rim/patologia , Nefropatias/patologia , Microvasos/patologia
5.
Mol Pharm ; 18(3): 850-861, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428414

RESUMO

Targeting different cell surface receptors with nanoparticle (NP)-based platforms can result in differential particle binding properties that may impact their localization, bioavailability, and, ultimately, the therapeutic efficacy of an encapsulated payload. Conventional in vitro assays comparing the efficacy of targeted NPs often do not adequately control for these differences in particle-receptor binding, potentially confounding their therapeutic readouts and possibly even limiting their experimental value. In this work, we characterize the conditions under which NPs loaded with Bruton's Tyrosine Kinase (BTK) inhibitor differentially suppress primary B cell activation when targeting either CD19 (internalizing) or B220 (noninternalizing) surface receptors. Surface binding of fluorescently labeled CD19- and B220-targeted NPs was analyzed and quantitatively correlated with the number of bound particles at given treatment concentrations. Using this binding data, suppression of B cell activation was directly compared for differentially targeted (CD19 vs B220) NPs loaded with a BTK inhibitor at a range of particle drug loading concentrations. When NPs were loaded with lower amounts of drug, CD19-mediated internalization demonstrated increased inhibition of B cell proliferation compared with B220 NPs. However, these differences were mitigated when particles were loaded with higher concentrations of BTK inhibitor and B220-mediated "paracrine-like" delivery demonstrated superior suppression of cellular activation when cells were bound to lower overall numbers of NPs. Taken together, these results demonstrate that inhibition of B cell activation can be optimized for NPs targeting either internalizing or noninternalizing surface receptors and that particle internalization is likely not a requisite endpoint when designing particles for delivery of BTK inhibitor to B cells.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Nanopartículas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD19/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
6.
J Allergy Clin Immunol ; 145(2): 550-562, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32035607

RESUMO

BACKGROUND: Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE: We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS: We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS: Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION: Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.


Assuntos
Asma/imunologia , Quimiotaxia de Leucócito/imunologia , MicroRNAs/imunologia , MicroRNAs/metabolismo , Rinite Alérgica Perene/imunologia , Sinusite/imunologia , Animais , Asma/metabolismo , Asma/patologia , Células Endoteliais/metabolismo , Eosinófilos , Humanos , Camundongos , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/metabolismo , Eosinofilia Pulmonar/patologia , Rinite Alérgica Perene/metabolismo , Rinite Alérgica Perene/patologia , Sinusite/metabolismo , Sinusite/patologia
7.
FASEB J ; 33(2): 2171-2186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252532

RESUMO

Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.


Assuntos
Endotélio Vascular/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neutrófilos/citologia , Pericitos/citologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Endotélio Vascular/citologia , Ensaio de Imunoadsorção Enzimática , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Knockout
8.
Am J Pathol ; 187(8): 1893-1906, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28609645

RESUMO

Sweet syndrome (SS) is a prototypical neutrophilic dermatosis, a class of inflammatory diseases marked by elevated levels of tumor necrosis factor (TNF)-α and IL-17A, pathologic neutrophil recruitment, and microvascular remodeling. Histologic analyses of four matrix proteins-collagen I and IV, laminin, and fibronectin-in skin biopsies of patients with SS reveal that the basement membrane of dermal postcapillary venules undergoes changes in structure and composition. Increased neutrophil recruitment in vivo was associated with increases in collagen IV, decreases in laminin, and varied changes in fibronectin. In vitro studies using TNF-α and IL-17A were conducted to dissect basement membrane remodeling. Prolonged dual activation of cultured human pericytes with TNF-α and IL-17A augmented collagen IV production, similar to in vivo remodeling. Co-activation of pericytes with TNF-α and IL-17A also elevated fibronectin levels with little direct effect on laminin. However, the expression of fibronectin- and laminin-specific matrix metalloproteinases (MMPs), particularly MMP-3, was significantly up-regulated. Interactions between pericytes and neutrophils in culture yielded even higher levels of active MMPs, facilitating fibronectin and laminin degradation, and likely contributing to the varied levels of detectable fibronectin and the decreases in laminin observed in vivo. These data indicate that pericyte-neutrophil interactions play a role in mediating microvascular changes in SS and suggest that targeting MMP-3 may be effective in protecting vascular wall integrity.


Assuntos
Membrana Basal/efeitos dos fármacos , Interleucina-17/farmacologia , Neutrófilos/metabolismo , Pericitos/efeitos dos fármacos , Síndrome de Sweet/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Idoso , Membrana Basal/metabolismo , Membrana Basal/patologia , Células Cultivadas , Colágeno Tipo IV/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Neutrófilos/patologia , Pericitos/metabolismo , Pericitos/patologia , Síndrome de Sweet/patologia
9.
J Immunol ; 197(6): 2400-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27534549

RESUMO

A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multistep process that involves sequential cell-cell interactions of circulating leukocytes with IL-1- or TNF-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a proinflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, although neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA sequencing analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and they also stimulate neutrophil production of proinflammatory molecules, including TNF, IL-1α, IL-1ß, and IL-8. Furthermore, IL-17-activated PCs, but not ECs, can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondrial outer membrane permeabilization and caspase-9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by conditioned media from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space.


Assuntos
Endotélio Vascular/fisiologia , Interleucina-17/imunologia , Neutrófilos/imunologia , Pericitos/fisiologia , Receptores de Interleucina-17/imunologia , Caspase 9/metabolismo , Células Cultivadas , Meios de Cultura , Citocinas/biossíntese , Citocinas/imunologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Fator Estimulador de Colônias de Granulócitos/biossíntese , Fator Estimulador de Colônias de Granulócitos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-17/genética , Interleucina-17/farmacologia , Infiltração de Neutrófilos , Neutrófilos/fisiologia , Pericitos/efeitos dos fármacos , Pericitos/imunologia , Receptores de Interleucina-17/fisiologia , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Vênulas/citologia , Vênulas/imunologia
10.
Am J Respir Crit Care Med ; 196(12): 1571-1581, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28783377

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-ß1 (TGF-ß1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. OBJECTIVES: We aimed to define an association between mtDNA and fibroblast responses in IPF. METHODS: We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-ß1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. MEASUREMENTS AND MAIN RESULTS: Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-ß1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. CONCLUSIONS: These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.


Assuntos
DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/mortalidade , Idoso , Intervalo Livre de Doença , Feminino , Humanos , Masculino
11.
Microcirculation ; 22(1): 54-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25214363

RESUMO

OBJECTIVE: Neutrophil extravasation at post-capillary venules, consisting of EC, PC, and the shared ECM, increases following fibrotic remodeling in the lung, liver, and skin. The role of fibrotic pericyte-derived ECM in regulating EC activation and neutrophil recruitment remains unexplored. METHODS: To elucidate the role of human pericyte-derived ECM in EC activation, we characterized PC-derived ECM following transforming growth factor-ß1, IL-1ß, CCL2, or bleomycin activation, and examined surface adhesion molecule expression and neutrophil recruitment by EC cultured on PC-ECM. RESULTS: Pro-inflammatory activation of PC-induced deposition of compositionally distinct ECM compared with non-activated control. Bleomycin activation induced fibronectin-rich and collagen-poor ECM remodeling by PC, facilitating increased neutrophil transendothelial migration when compared with non-activated pericyte ECM (49.9 ± 3.4% versus 29.7 ± 1.4%). Increases in fibronectin compared to collagen I, are largely responsible for ECM-regulated neutrophil recruitment, as EC cultured on fibronectin supported increased neutrophil transmigration compared to collagen I (51.6 ± 6.2% versus 28.0 ± 4.8%). We attribute this difference to increased expression of ICAM-1 and its redistribution to EC borders. CONCLUSIONS: This is the first demonstration of human pericyte sensitivity to inflammatory stimuli, inducing fibrotic matrix deposition that regulates EC adhesion molecule expression and neutrophil recruitment.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Molécula 1 de Adesão Intercelular/biossíntese , Neutrófilos/metabolismo , Pericitos/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Quimiocina CCL2/metabolismo , Humanos , Interleucina-1beta/metabolismo , Neutrófilos/citologia , Pericitos/citologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
12.
FASEB J ; 28(3): 1166-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24297702

RESUMO

Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), platelet-endothelial cell adhesion molecule 1 (PECAM-1), CD99, and interleukin 8 (IL-8). After TNF-α activation, the ECs supported greater neutrophil adhesion (66.1 vs. 23.7% of input cells) and transmigration (35.1 vs. 7.20% of input cells) than did the PCs, but the composites behaved comparably (no significant difference) to ECs in both assays. TNF-α-activated EC-conditioned medium (CM) increased transmigration across the PCs, whereas TNF-α-activated PC-CM decreased transmigration across the ECs, and culturing on PC-derived BM decreased both adhesion to and transmigration across the ECs. Anti-very late antigen 4 (VLA-4; on neutrophils) inhibited adhesion to TNF-α-activated composites, but not to ECs alone. Anti-CD99 (expressed on all 3 cell types) inhibited transmigration across the composites (14.5% of control) more than across the ECs (39.0% of control), and venular shear stress reduced transmigration across the ECs (17.3% of static) more than across the composites (36.7% of static). These results provide proof of concept that our composite human EC/PC/BM venular construct can reveal new interactions in the inflammatory cascade.


Assuntos
Leucócitos/citologia , Modelos Biológicos , Vênulas/anatomia & histologia , Adesão Celular , Movimento Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Eletrônica de Varredura , Vênulas/citologia
13.
Sci Adv ; 10(11): eadk6906, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478620

RESUMO

Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.


Assuntos
Matriz Extracelular , Macrófagos , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Citoesqueleto , Integrinas/metabolismo , Transdução de Sinais
14.
Biotechnol Bioeng ; 110(3): 999-1003, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23055258

RESUMO

The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα-induced E-selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL-1ß-induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre-exposed to 12 h of laminar shear (shear-conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα-induced relative to IL-1ß-induced HUVEC expression of E-selectin. Specifically, E-selectin surface expression by naïve HUVECs is enhanced in the 8-12 h activation time range with simultaneous exposure to shear and TNFα (shear-TNFα) relative to TNFα static control whereas enhanced E-selectin expression is observed in the 4-24 h range for shear-IL-1ß treatment relative to IL-1ß static control. While exposure of HUVECs to shear preconditioning mutes shear-TNFα-induced E-selectin expression, it enhances or down-regulates shear-IL-1ß-induced expression dependent on the activation period. Under dual-cytokine-shear conditions, IL-1ß signaling dominates. Overall, a better understanding of E-selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies.


Assuntos
Selectina E/biossíntese , Células Endoteliais/fisiologia , Interleucina-1beta/metabolismo , Fenômenos Mecânicos , Estresse Fisiológico , Fator de Necrose Tumoral alfa/metabolismo , Humanos
15.
Nano Lett ; 12(6): 2697-704, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22646476

RESUMO

We report on the development of a nanowire substrate-enabled laser scanning imaging cytometry for rare cell analysis in order to achieve quantitative, automated, and functional evaluation of circulating tumor cells. Immuno-functionalized nanowire arrays have been demonstrated as a superior material to capture rare cells from heterogeneous cell populations. The laser scanning cytometry method enables large-area, automated quantitation of captured cells and rapid evaluation of functional cellular parameters (e.g., size, shape, and signaling protein) at the single-cell level. This integrated platform was first tested for capture and quantitation of human lung carcinoma cells from a mixture of tumor cells and leukocytes. We further applied it to the analysis of rare tumor cells spiked in fresh human whole blood (several cells per mL) that emulate metastatic cancer patient blood and demonstrated the potential of this technology for analyzing circulating tumor cells in the clinical settings. Using a high-content image analysis algorithm, cellular morphometric parameters and fluorescence intensities can be rapidly quantitated in an automated, unbiased, and standardized manner. Together, this approach enables informative characterization of captured cells in situ and potentially allows for subclassification of circulating tumor cells, a key step toward the identification of true metastasis-initiating cells. Thus, this nanoenabled platform holds great potential for studying the biology of rare tumor cells and for differential diagnosis of cancer progression and metastasis.


Assuntos
Contagem de Células/instrumentação , Separação Celular/instrumentação , Citometria de Fluxo/instrumentação , Lasers , Neoplasias Pulmonares/patologia , Nanoestruturas/química , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Nanoestruturas/ultraestrutura , Tamanho da Partícula
16.
Yale J Biol Med ; 86(4): 537-54, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24348218

RESUMO

Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microvasos/efeitos dos fármacos , Nanopartículas/química , Nanotecnologia/métodos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrose , Humanos , Microvasos/metabolismo , Microvasos/patologia , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem
17.
Yale J Biol Med ; 85(2): 167-85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22737047

RESUMO

Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized.


Assuntos
Comunicação Celular/imunologia , Células Endoteliais/imunologia , Proteínas da Matriz Extracelular/imunologia , Neutrófilos/imunologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Células Endoteliais/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Modelos Imunológicos , Neoplasias/imunologia , Neoplasias/metabolismo , Neutrófilos/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo
18.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177947

RESUMO

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Assuntos
Engenharia , Organoides , Humanos , Engenharia Tecidual
19.
Am J Public Health ; 101(8): e17-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680935

RESUMO

Methods for translating the findings of controlled trials, such as the Diabetes Prevention Program, into real-world community application have not been clearly defined. A standardized research methodology for making and evaluating such a transition is needed. We introduce the multisite translational community trial (mTCT) as the research analog to the multisite randomized controlled trial. The mTCT is adapted to incorporate the principles and practices of community-based participatory research and the increased relevance and generalizability gained from diverse community settings. The mTCT is a tool designed to bridge the gap between what a clinical trial demonstrates can work in principle and what is needed to make it workable and effective in real-world settings. Its utility could be put to the test, in particular with practice-based research networks such as the Prevention Research Centers.


Assuntos
Pesquisa Participativa Baseada na Comunidade , Promoção da Saúde , Pesquisa Translacional Biomédica , Pesquisa Participativa Baseada na Comunidade/organização & administração , Cultura , Diabetes Mellitus/prevenção & controle , Pesquisa sobre Serviços de Saúde , Humanos , Modelos Teóricos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento de Redução do Risco , Meio Social , Pesquisa Translacional Biomédica/organização & administração
20.
Stem Cell Res ; 53: 102318, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33836422

RESUMO

Although delivery of neural stem cell (NSC) as a therapeutic treatment for intracerebral hemorrhage (ICH) provides promise, NSC delivery typically has extremely low survival rates. Here, we investigate endothelial cell (EC) and pericyte (PC) interactions with NSC, where our results demonstrate that EC, and not PC, promote NSC cell proliferation and reduce cytotoxicity under glucose deprivation (GD). Additionally, NSC proliferation was increased upon treatment with EC conditioned media, inhibited with antagonism of VEGFR3. In an NSC + EC co-culture we detected elevated levels of VEGF-C, not seen for NSC cultured alone. Exogenous VEGF-C induced NSC upregulation of VEGFR3, promoted proliferation, and reduced cytotoxicity. Finally, we delivered microbeads containing NSC + EC into a murine ICH cavity, where VEGF-C was increasingly present in the injury site, not seen upon delivery NSC encapsulated alone. These studies demonstrate that EC-secreted VEGF-C may promote NSC survival during injury, enhancing the potential for cell delivery therapies for stroke.


Assuntos
Células-Tronco Neurais , Fator C de Crescimento do Endotélio Vascular , Animais , Diferenciação Celular , Meios de Cultivo Condicionados , Células Endoteliais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA