Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Phylogenet Evol ; 190: 107945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863452

RESUMO

The deep-sea has experienced dramatic changes in physical and chemical variables in the geological past. However, little is known about how deep-sea species richness responded to such changes over time and space. Here, we studied the diversification dynamics of one of the most diverse octocorallian families inhabiting deep sea benthonic environments worldwide and sustaining highly diverse ecosystems, Primnoidae. A newly dated species-level phylogeny was constructed to infer their ancestral geographic locations and dispersal rates initially. Then, we tested whether their global and regional (the Southern Ocean) diversification dynamics were mediated by dispersal rate and abiotic factors as changes in ocean geochemistry. Finally, we tested whether primnoids showed changes in speciation and extinction at discrete time points. Our results suggested primnoids likely originated in the southwestern Pacific Ocean during the Lower Cretaceous âˆ¼112 Ma, with further dispersal after the physical separation of continental landmasses along the late Mesozoic and Cenozoic. Only the speciation rate of the Southern Ocean primnoids showed a significant correlation to ocean chemistry. Moreover, the Paleocene-Eocene thermal maximum marked a significant increase in the diversification of primnoids at global and regional scales. Our results provide new perspectives on the macroevolutionary and biogeographic patterns of an ecologically important benthic organism typically found in deep-sea environments.


Assuntos
Antozoários , Ecossistema , Humanos , Animais , Filogenia , Oceano Pacífico
2.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38050998

RESUMO

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Assuntos
Neoplasias , Nitrosaminas , Tabaco sem Fumaça , Humanos , Carcinógenos/toxicidade , Mutagênicos , Neoplasias/induzido quimicamente , Nitratos , Nitritos , Nitrosaminas/toxicidade , Nitrosaminas/química , Nitrosaminas/metabolismo , Tabaco sem Fumaça/toxicidade
3.
Mol Biol Evol ; 38(2): 686-701, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915961

RESUMO

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.


Assuntos
Artrópodes/genética , Filogenia , Animais , Feminino , Genoma , Masculino
4.
Biometals ; 35(5): 1059-1076, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931942

RESUMO

The development of new anticancer compounds is one of the challenges of bioinorganic and medicinal chemistry. Naringenin and its metal complexes have been recognized as promising inhibitors of cell proliferation, having enormous potential to act as an antioxidant and antitumorigenic agent. Lung cancer is the second most commonly diagnosed type of cancer. Therefore, this study is devoted to investigate the effects of Cu(II), naringenin (Nar), binary Cu(II)-naringenin complex (CuNar), and the Cu(II)-naringenin containing bathophenanthroline as an auxiliary ligand (CuNarBatho) on adenocarcinoma human alveolar basal epithelial cells (A549 cells) that are used as models for the study of drug therapies against lung cancer. The ternary complex shows selectivity being high cytotoxic against malignant cells. The cell death generated by CuNarBatho involves ROS production, loss of mitochondrial membrane potential, and depletion of GSH level and GSH/GSSG ratio. The structure-relationship activity was assessed by comparison with the reported Cu(II)-naringenin-phenanthroline complex. The CuNarBatho complex was synthesized and characterized by elemental analysis, molar conductivity, mass spectrometry, thermogravimetric measurements and UV-VIS, FT-IR, EPR, Raman and 1H-NMR spectroscopies. In addition, the binding to bovine serum albumin (BSA) was studied at the physiological conditions (pH = 7.4) by fluorescence spectroscopy.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Pulmonares , Antineoplásicos/química , Antioxidantes/farmacologia , Cátions , Complexos de Coordenação/química , Cobre/química , Flavanonas , Dissulfeto de Glutationa , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Inorg Chem ; 59(12): 7939-7952, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32436700

RESUMO

Azanone (HNO, nitroxyl) is a highly reactive molecule that, in the past few years, has drawn significant interest because of its pharmacological properties. However, the understanding of how, when, and where endogenous HNO is produced remains a matter of discussion. In this study, we examined the ability of myoglobin to produce HNO via the peroxidation of hydroxylamine with H2O2 using both experimental and computational approaches. The production of HNO was confirmed using an azanone selective electrochemical method and by the detection of N2O using FTIR. The catalytic capacity of myoglobin was characterized by the determination of the turnover number. The reaction kinetics of the hydroxylamine peroxidation were studied by both electrochemical and UV-vis methods. Further evidence about the reaction mechanism was obtained by EPR spectroscopy. Additionally, quantum mechanical/molecular mechanics experiments were performed to calculate the energy barrier for HNO production and to gain insight into the reaction mechanism. Our results confirm that myoglobin produces HNO via the peroxidation of hydroxylamine with a great catalytic capacity. In addition, our mechanistic study allows us to state that the Mb ferryl state is the most likely intermediate that reacts with hydroxylamine, yielding important evidence for endogenous HNO generation.


Assuntos
Hidroxilamina/química , Mioglobina/química , Óxidos de Nitrogênio/síntese química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Óxidos de Nitrogênio/química , Oxirredução , Teoria Quântica
6.
Biochim Biophys Acta Gen Subj ; 1862(3): 752-760, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29051066

RESUMO

The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Nitrito Redutases/metabolismo , Sinorhizobium meliloti/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cobre/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Nitrito Redutases/química , Nitrito Redutases/genética , Nitritos/metabolismo , Oxirredução , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/metabolismo , Sinorhizobium meliloti/genética , Espectrofotometria Ultravioleta
7.
Acc Chem Res ; 48(11): 2875-84, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26509703

RESUMO

It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both enzymes; however, Met and His have different roles. His participates directly on catalysis, and it is therefore detrimental for the catalytic cycle of FdH. Met only participates in substrate binding. We concluded that this small but key difference dictates the type of reaction that is catalyzed by each enzyme. In addition, it allows explaining why formate can bind in the Nap active site in the same way as the natural substrate (nitrate), but the reaction becomes stalled afterward.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Formiato Desidrogenases/química , Formiato Desidrogenases/ultraestrutura , Hidrogenase/química , Hidrogenase/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Nitrato Redutase/química , Nitrato Redutase/ultraestrutura , Desulfovibrio desulfuricans , Modelos Químicos
8.
Biofouling ; 32(4): 465-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26960078

RESUMO

Fouling communities on artificial marine structures are generally different from benthic communities in natural rocky habitats. However, they may also differ among different types of artificial structures. Two artificial structures in direct contact with arriving vessels were compared: floating pontoons within recreational marinas, and sea-walls within commercial harbours. Natural rocky habitats were used as a reference, and the genus Eudendrium (Cnidaria, Hydrozoa) was chosen as a bioindicator. The assemblages were different among the three types of habitat studied, with different species characterising each habitat. The probability of finding an invasive Eudendrium species was significantly higher on pontoons. Diversity was the lowest on pontoons, but it was not significantly different between sea-walls and natural rocks. In general, a barrier to the spread of exotic species exists between harbours and natural rocky habitats. Floating pontoons seem to be a less suitable habitat for native fauna and a key element in marine biological invasions.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Animais , Bioensaio/instrumentação , Bioensaio/métodos , Hidrozoários/fisiologia , Indústrias , Limnologia/métodos , Biologia Marinha/métodos
9.
J Biol Inorg Chem ; 20(2): 233-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25344343

RESUMO

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a homodimeric molybdenum-containing protein that catalyzes the hydroxylation of aldehydes to carboxylic acids and contains a Mo-pyranopterin active site and two FeS centers called FeS 1 and FeS 2. The electron transfer reaction inside DgAOR is proposed to be performed through a chemical pathway linking Mo and the two FeS clusters involving the pyranopterin ligand. EPR studies performed on reduced as-prepared DgAOR showed that this pathway is able to transmit very weak exchange interactions between Mo(V) and reduced FeS 1. Similar EPR studies but performed on DgAOR samples inhibited with glycerol and ethylene glycol showed that the value of the exchange coupling constant J increases ~2 times upon alcohol inhibition. Structural studies in these DgAOR samples have demonstrated that the Mo-FeS 1 bridging pathway does not show significant differences, confirming that the changes in J observed upon inhibition cannot be ascribed to structural changes associated neither with pyranopterin and FeS 1 nor with changes in the electronic structure of FeS 1, as its EPR properties remain unchanged. Theoretical calculations indicate that the changes in J detected by EPR are related to changes in the electronic structure of Mo(V) determined by the replacement of the OHx labile ligand for an alcohol molecule. Since the relationship between electron transfer rate and isotropic exchange interaction, the present results suggest that the intraenzyme electron transfer process mediated by the pyranopterin moiety is governed by a Mo ligand-based regulatory mechanism.


Assuntos
Aldeído Oxirredutases/química , Desulfovibrio gigas/enzimologia , Molibdênio/química , Conformação Proteica , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Cinética , Ligantes , Oxirredução , Especificidade por Substrato
10.
J Biol Inorg Chem ; 20(2): 219-29, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25261288

RESUMO

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.


Assuntos
Aldeído Oxirredutases/química , Aldeídos/química , Desulfovibrio gigas/enzimologia , Conformação Proteica , Aldeído Oxirredutases/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Molibdênio/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Ligação Proteica , Especificidade por Substrato
11.
BMC Public Health ; 15: 1273, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26692352

RESUMO

BACKGROUND: Studies reveal that electronic cigarette (e-cigarette) and hookah use are increasing among adolescents and young adults. However, the long-term health effects are unknown, especially with regards to pregnancy. Because of the increased use in women of reproductive age, and the unknown long-term health risks, our primary objectives were to determine the perceived risks of e-cigarette and hookah use in pregnancy, and learn common colloquial terms associated with e-cigarettes. Furthermore, we sought to determine if there is a stigma associated with e-cigarette use in pregnancy. METHODS: Eleven focus groups including 87 participants were conducted immediately following regularly scheduled CenteringPregnancy® prenatal care with women at three different clinics in the greater Houston area. A minimum of two facilitators led the groups, using ten lead-in prompts, with Spanish translation as necessary. Facilitators took notes which were compared immediately following each group discussion and each group was audio recorded and transcribed. Three facilitators utilized NVivo 9.0 software to organize the transcribed data into nodes to identify major themes. To increase rigor, transcripts were further analyzed by two obstetricians who were instructed to find the major themes. RESULTS: Analyses revealed contradicting themes concerning e-cigarette use. In general, e-cigarettes were perceived as safer alternatives to regular tobacco cigarettes, especially if used as smoking cessation devices. A major theme is that use in pregnancy is harmful to the fetus. However, it was perceived that use for smoking cessation in pregnancy may have fewer side effects. We found that a common term for e-cigarettes is "Blu." In our discussion of hookah use, participants perceived use as popular among teenagers and that use in pregnancy is dangerous for the fetus. CONCLUSIONS: Although a strong theme emerged against hookah use, we found contradicting themes in our discussions on e-cigarette use in pregnancy. It is possible that e-cigarette use will not carry the same stigma as regular cigarette smoking in pregnancy. In addition, the impression of e-cigarettes as a healthier alternative to smoking may influence use in pregnancy. Clinicians need to be prepared for questions of e-cigarette safety and efficacy as smoking cessation devices from their pregnant patients who smoke, and women who smoke and are planning to become pregnant.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina/psicologia , Fumar/efeitos adversos , Fumar/psicologia , Adolescente , Comportamento do Adolescente , Adulto , Feminino , Grupos Focais , Humanos , Gravidez , Medição de Risco , Adulto Jovem
12.
Biochim Biophys Acta ; 1817(7): 1072-82, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561116

RESUMO

The respiratory nitrate reductase complex (NarGHI) from Marinobacter hydrocarbonoclasticus 617 (Mh, formerly Pseudomonas nautica 617) catalyzes the reduction of nitrate to nitrite. This reaction is the first step of the denitrification pathway and is coupled to the quinone pool oxidation and proton translocation to the periplasm, which generates the proton motive force needed for ATP synthesis. The Mh NarGH water-soluble heterodimer has been purified and the kinetic and redox properties have been studied through in-solution enzyme kinetics, protein film voltammetry and spectropotentiometric redox titration. The kinetic parameters of Mh NarGH toward substrates and inhibitors are consistent with those reported for other respiratory nitrate reductases. Protein film voltammetry showed that at least two catalytically distinct forms of the enzyme, which depend on the applied potential, are responsible for substrate reduction. These two forms are affected differentially by the oxidizing substrate, as well as by pH and inhibitors. A new model for the potential dependence of the catalytic efficiency of Nars is proposed.


Assuntos
Biocatálise , Cloratos/metabolismo , Marinobacter/enzimologia , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Percloratos/metabolismo , Adsorção , Azidas/farmacologia , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Técnicas Eletroquímicas , Eletrodos , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/enzimologia , Grafite , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Cinética , Marinobacter/efeitos dos fármacos , Modelos Biológicos , Nitrato Redutase/química , Oxirredução/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Soluções , Espectrofotometria , Especificidade por Substrato/efeitos dos fármacos
13.
Inorg Chem ; 52(19): 10766-72, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24066983

RESUMO

A structural rearrangement known as sulfur shift occurs in some Mo-containing enzymes of the DMSO reductase family. This mechanism is characterized by the displacement of a coordinating cysteine thiol (or SeCys in Fdh) from the first to the second shell of the Mo-coordination sphere metal. The hexa-coordinated Mo ion found in the as-isolated state cannot bind directly any exogenous ligand (substrate or inhibitors), while the penta-coordinated ion, attained upon sulfur shift, has a free binding site for direct coordination of the substrate. This rearrangement provides an efficient mechanism to keep a constant coordination number throughout an entire catalytic pathway. This mechanism is very similar to the carboxylate shift observed in Zn-dependent enzymes, and it has been recently detected by experimental means. In the present paper, we calculated the geometries and energies involved in the sulfur-shift mechanism using QM-methods (M06/(6-311++G(3df,2pd),SDD)//B3LYP/(6-31G(d),SDD)). The results indicated that the sulfur-shift mechanism provides an efficient way to enable the metal ion for substrate coordination.


Assuntos
Formiato Desidrogenases/química , Nitrato Redutase/química , Enxofre/química , Simulação por Computador , Modelos Moleculares
14.
Sci Rep ; 13(1): 2057, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739451

RESUMO

Determining outline, volume and effusion rate during an effusive volcanic eruption is crucial as it is a major controlling factor of the lava flow lengths, the prospective duration and hence the associated hazards. We present for the first time a multi-sensor thermal-and-topographic satellite data analysis for estimating lava effusion rates and volume. At the 2021 lava field of Cumbre Vieja, La Palma, we combine VIIRS + MODIS thermal data-based effusion rate estimates with DSMs analysis derived from optical tri-stereo Pléiades and TanDEM-X bi-static SAR-data. This multi-sensor-approach allows to overcome limitations of single-methodology-studies and to achieve both, high-frequent observation of the relative short-term effusion rate trends and precise total volume estimates. We find a final subaerial-lava volume of [Formula: see text] with a MOR of 28.8 ± 1.4 m3/s. We identify an initially sharp eruption-rate-peak, followed by a gradually decreasing trend, interrupted by two short-lived-peaks in mid/end November. High eruption rate accompanied by weak seismicity was observed during the early stages of the eruption, while during later stage the lava effusion trend coincides with seismicity. This article demonstrates the geophysical monitoring of eruption rate fluctuations, that allows to speculate about changes of an underlying pathway during the 2021 Cumbre Vieja eruption.

15.
J Inorg Biochem ; 241: 112155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739731

RESUMO

A copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide in the denitrifier Sinorhizobium meliloti 2011 (SmNirK), a microorganism used as bioinoculant in alfalfa seeds. Wild type SmNirK is a homotrimer that contains two copper centers per monomer, one of type 1 (T1) and other of type 2 (T2). T2 is at the interface of two monomers in a distorted square pyramidal coordination bonded to a water molecule and three histidine side chains, H171 and H136 from one monomer and H342 from the other. We report the molecular, catalytic, and spectroscopic properties of the SmNirK variant H342G, in which the interfacial H342 T2 ligand is substituted for glycine. The molecular properties of H342G are similar to those of wild type SmNirK. Fluorescence-based thermal shift assays and FTIR studies showed that the structural effect of the mutation is only marginal. However, the kinetic reaction with the physiological electron donor was significantly affected, which showed a âˆ¼ 100-fold lower turnover number compared to the wild type enzyme. UV-Vis, EPR and FTIR studies complemented with computational calculations indicated that the drop in enzyme activity are mainly due to the void generated in the protein substrate channel by the point mutation. The main structural changes involve the filling of the void with water molecules, the direct coordination to T2 copper ion of the second sphere aspartic acid ligand, a key residue in catalysis and nitrite sensing in NirK, and to the loss of the 3 N-O coordination of T2.


Assuntos
Cobre , Sinorhizobium meliloti , Cobre/química , Nitritos/química , Sinorhizobium meliloti/química , Sinorhizobium meliloti/metabolismo , Histidina/química , Domínio Catalítico , Oxirredução , Ligantes , Glicina , Espectroscopia de Ressonância de Spin Eletrônica , Nitrito Redutases/química
16.
Dalton Trans ; 52(40): 14595-14605, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37786344

RESUMO

We report the synthesis, crystal structure, and characterisation of a dinuclear Co(II) compound with thiodiacetate (tda) and phenanthroline (phen) as ligands (1), and of a series of metal complexes isomorphous to 1 with different Co : Zn ratios (2, 4 : 1; 3, 1 : 1; 4, 1 : 4; 5, 1 : 10). General characterisation methodologies and X-ray data showed that all the synthesised complexes are isomorphous to Zn(II) and Cu(II) analogues (CSD codes: DUHXEL and BEBQII). 1 consists of centrosymmetric Co(II) ion dimers in which the ions are 3.214 Å apart, linked by two µ-O bridges. Each cobalt atom is in a distorted octahedral environment of the N2O3S type. UV-vis spectra of 1 and 5 are in line with high spin (S = 3/2) Co(II) ions in octahedral coordination and indicate that the electronic structure of both Co(II) ions in the dinuclear unit does not significantly change relative to that of the magnetically isolated Co(II) ion. EPR spectra of powder samples of 5 (Co : Zn ratio of 1 : 10) together with spectral simulation indicated high spin Co(II) ions with high rhombic distortion of the zfs [E/D = 0.31(1), D > 0]. DC magnetic susceptibility experiments on 1 and analysis of the data constraining the E/D value obtained by EPR yielded g = 2.595(7), |D| = 61(1) cm-1, and an intradimer ferromagnetic exchange coupling of J = 1.39(4) cm-1. EPR spectra as a function of Co : Zn ratio for both powder and single crystal samples confirmed that they result from two effective S' = 1/2 spins that interact through dipolar and isotropic exchange interactions to yield magnetically isolated S' = 1 centres and that interdimeric exchange interactions, putatively mediated by hydrophobic interactions between phen moieties, are negligible. The latter observation contrasts with that observed in the Cu(II) analogue, where a transition from S = 1 to S' = 1/2 was observed. Computational calculations indicated that the absence of the interdimeric exchange interaction in 1 is due to a lower Co(II) ion spin density delocalisation towards the metal ligands.

17.
Science ; 375(6587): 1348-1349, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324304

RESUMO

Unexpected features from the 2021 eruption might help forecast giant flank collapses.

18.
J Bacteriol ; 193(12): 2917-23, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478344

RESUMO

Formate dehydrogenases (FDHs) are enzymes that catalyze the formate oxidation to carbon dioxide and that contain either Mo or W in a mononuclear form in the active site. In the present work, the influence of Mo and W salts on the production of FDH by Desulfovibrio alaskensis NCIMB 13491 was studied. Two different FDHs, one containing W (W-FDH) and a second incorporating either Mo or W (Mo/W-FDH), were purified. Both enzymes were isolated from cells grown in a medium supplemented with 1 µM molybdate, whereas only the W-FDH was purified from cells cultured in medium supplemented with 10 µM tungstate. We demonstrated that the genes encoding the Mo/W-FDH are strongly downregulated by W and slightly upregulated by Mo. Metal effects on the expression level of the genes encoding the W-FDH were less significant. Furthermore, the expression levels of the genes encoding proteins involved in molybdate and tungstate transport are downregulated under the experimental conditions evaluated in this work. The molecular and biochemical properties of these enzymes and the selective incorporation of either Mo or W are discussed.


Assuntos
Desulfovibrio/enzimologia , Formiato Desidrogenases/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Molibdênio/farmacologia , Tungstênio/farmacologia , Desulfovibrio/metabolismo , Formiato Desidrogenases/genética
19.
J Biol Inorg Chem ; 16(8): 1255-68, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21773834

RESUMO

Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C-H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.


Assuntos
Formiato Desidrogenases/química , Formiato Desidrogenases/isolamento & purificação , Formiatos/química , Modelos Moleculares , Molibdênio/química , Tungstênio/química , Dióxido de Carbono/química , Catálise , Simulação por Computador , Desulfovibrio/enzimologia , Desulfovibrio/metabolismo , Desulfovibrio desulfuricans/enzimologia , Desulfovibrio desulfuricans/metabolismo , Desulfovibrio gigas/enzimologia , Desulfovibrio gigas/metabolismo , Elétrons , Cinética , Conformação Molecular , Oxirredução , Conformação Proteica
20.
Artigo em Inglês | MEDLINE | ID: mdl-34769681

RESUMO

Population statistics show that there was an increase in life expectancy during the last century. However, this fact hides that this increase was not equal for all groups of the population. One of the most problematic cases for measuring this increase is that of the dependent population because of the absence of specific statistics. This paper describes a methodology for calculating life expectancy using multistate models that take into account the diversity of situations considered by Spanish legislation. For this purpose, statistical information contained in the national survey on disability and dependency (EDAD 2008) is used. The results suggest that life expectancies are lower than those of the general population and that they differ according to gender and intensity of suffering from this contingency. The calculations were made considering the legal framework currently existing in Spain. This fact conditions the definition of dependent person and, therefore, the set of individuals, their characteristics, and therefore, their final results.


Assuntos
Pessoas com Deficiência , Expectativa de Vida , Humanos , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA