Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37066993

RESUMO

Spatially invariant feature detection is a property of many visual systems that rely on visual information provided by two eyes. However, how information across both eyes is integrated for invariant feature detection is not fully understood. Here, we investigated spatial invariance of looming responses in descending neurons (DNs) of Drosophila melanogaster. We found that multiple looming responsive DNs integrate looming information across both eyes, even though their dendrites are restricted to a single visual hemisphere. One DN, the giant fiber (GF), responds invariantly to looming stimuli across tested azimuthal locations. We confirmed visual information propagates to the GF from the contralateral eye, through an unidentified pathway, and demonstrated that the absence of this pathway alters GF responses to looming stimuli presented to the ipsilateral eye. Our data highlight a role for bilateral visual integration in generating consistent, looming-evoked escape responses that are robust across different stimulus locations and parameters.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Reação de Fuga/fisiologia
2.
Biol Psychiatry ; 86(4): 294-305, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272685

RESUMO

BACKGROUND: Although habituation is one of the most ancient and fundamental forms of learning, its regulators and its relevance for human disease are poorly understood. METHODS: We manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and we tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies, and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits. RESULTS: We identified >100 genes required for habituation learning. For 93 of these genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with macrocephaly and/or overgrowth and comorbid ASD. Moreover, individuals with ASD from the Simons Simplex Collection carrying damaging de novo mutations in these genes exhibit increased aberrant behaviors associated with inappropriate, stereotypic speech. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras/mitogen-activated protein kinase (Ras/MAPK) signaling. Both increased Ras/MAPK signaling in gamma-aminobutyric acidergic (GABAergic) neurons and decreased Ras/MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response. CONCLUSIONS: Our work supports the relevance of habituation learning to ASD, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation, and reveals an opposing, circuit-level-based mechanism for Ras/MAPK signaling. These findings establish habituation as a possible, widely applicable functional readout and target for pharmacologic intervention in ID/ASD.


Assuntos
Transtorno do Espectro Autista/genética , Comportamento Animal , Drosophila/fisiologia , Habituação Psicofisiológica/genética , Deficiência Intelectual/genética , Transdução de Sinais , Animais , Transtorno do Espectro Autista/diagnóstico , Modelos Animais de Doenças , Drosophila/genética , Humanos , Deficiência Intelectual/diagnóstico , Aprendizagem , Mutação , Fenótipo
3.
J Neurosci Methods ; 304: 154-161, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715480

RESUMO

BACKGROUND: How experience and individuality shape action selection remains a major question in neuroscience. Visually-evoked escape behavior within Drosophila melanogaster provides a robust model to study these mechanisms within neural circuits but requires novel assays to circumvent limitations of current behavior assays. METHOD: Here we describe and characterize a simple, low to moderate cost, and flexible assay for studying visually-evoked escape responses in tethered flies. This assay consists of a DLP projector, cylindrical rear projection screen, and an automated flight interruption motor all controlled within a MATLAB environment. RESULTS: We find this assay effectively recapitulates fly behaviors previously observed in free behavior assays, and provides a novel opportunity to investigate the behavior of individual flies over the course of numerous stimulus presentations. COMPARISON TO EXISTING METHODS: Current Drosophila escape assays do not permit multiple stimulus presentations and can be highly complex and expensive to implement. CONCLUSIONS: This assay provides an effective system to further identify neural components and mechanisms underlying action selection within parallel sensorimotor pathways.


Assuntos
Comportamento de Escolha/fisiologia , Reação de Fuga/fisiologia , Animais , Drosophila , Voo Animal/fisiologia , Rede Nervosa/fisiologia , Estimulação Luminosa/efeitos adversos , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA