Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288573

RESUMO

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fibrilinas/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Fibrilina-1/metabolismo , Ruptura Aórtica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Oxirredução , Modelos Animais de Doenças , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapêutico
3.
Circulation ; 142(25): 2459-2469, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33076678

RESUMO

BACKGROUND: SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes. METHODS: Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to H2O2 (100 µmol/Lµ). Free mitochondrial calcium concentration was measured in adult rat ventricular myocytes with a genetically targeted fluorescent probe, and SR calcium content was assessed by measuring caffeine-stimulated release. Mice with heterozygous knock-in of the SERCA C674S mutation were subjected to chronic ascending aortic constriction. RESULTS: In adult rat ventricular myocytes expressing wild-type SERCA, H2O2 caused a 25% increase in mitochondrial calcium concentration that was associated with a 50% decrease in SR calcium content, both of which were prevented by the ryanodine receptor inhibitor tetracaine. In cells expressing the C674S mutant, basal SR calcium content was decreased by 31% and the H2O2-stimulated rise in mitochondrial calcium concentration was attenuated by 40%. In wild-type cells, H2O2 caused cytochrome c release and apoptosis, both of which were prevented in C674S-expressing cells. In myocytes from SERCA knock-in mice, basal SERCA activity and SR calcium content were decreased. To test the effect of C674 oxidation on apoptosis in vivo, SERCA knock-in mice were subjected to chronic ascending aortic constriction. In wild-type mice, ascending aortic constriction caused myocyte apoptosis, LV dilation, and systolic failure, all of which were inhibited in SERCA knock-in mice. CONCLUSIONS: Redox activation of SERCA C674 regulates basal SR calcium content, thereby mediating the pathologic reactive oxygen species-stimulated rise in mitochondrial calcium required for myocyte apoptosis and myocardial failure.


Assuntos
Apoptose , Cálcio/metabolismo , Insuficiência Cardíaca/enzimologia , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxidantes/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Função Ventricular Esquerda , Remodelação Ventricular
4.
Proc Natl Acad Sci U S A ; 112(5): 1607-12, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605929

RESUMO

Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.


Assuntos
Hibernação , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , Neurônios/metabolismo , Termogênese , Animais , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sciuridae , Proteína Desacopladora 1
5.
Proc Natl Acad Sci U S A ; 111(41): 14941-6, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25246547

RESUMO

Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.


Assuntos
Patos/fisiologia , Comportamento Alimentar , Mecanotransdução Celular , Neurônios/fisiologia , Tato/fisiologia , Animais , Regulação para Baixo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Limiar Sensorial , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Termorreceptores/metabolismo , Gânglio Trigeminal/fisiologia , Regulação para Cima
6.
J Am Heart Assoc ; 10(18): e020441, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34533042

RESUMO

Background Persistent activation of endoplasmic reticulum stress and the unfolded protein response (UPR) induces vascular cell apoptosis, contributing to atherogenesis. Aging and hypercholesterolemia are 2 independent proatherogenic factors. How they affect vascular UPR signaling remains unclear. Methods and Results Transcriptome analysis of aortic tissues from high fat diet-fed and aged ApoE-/- mice revealed 50 overlapping genes enriched for endoplasmic reticulum stress- and UPR-related pathways. Aortae from control, Western diet (WD)-fed, and aged ApoE-/- mice were assayed for (1) 3 branches of UPR signaling (pancreatic ER eIF2-alpha kinase /alpha subunit of the eukaryotic translation initiation factor 1/activating transcription factor 4, inositol-requiring enzyme 1 alpha/XBP1s, activating transcription factor 6); (2) UPR-mediated protective adaptation (upregulation of immunoglobulin heavy chain-binding protein and protein disulfide isomerase); and (3) UPR-mediated apoptosis (induction of C/EBP homologous transcription factor, p-JNK, and cleaved caspase-3). Aortic UPR signaling was differentially regulated in the aged and WD-fed groups. Consumption of WD activated all 3 UPR branches; in the aged aorta, only the ATF6α arm was activated, but it was 10 times higher than that in the WD group. BiP and protein disulfide isomerase protein levels were significantly decreased only in the aged aorta despite a 5-fold increase in their mRNA levels. Importantly, the aortae of aged mice exhibited a substantially enhanced proapoptotic UPR compared with that of WD-fed mice. In lung tissues, UPR activation and the resultant adaptive/apoptotic responses were not significantly different between the 2 groups. Conclusions Using a mouse model of atherosclerosis, this study provides the first in vivo evidence that aging and an atherogenic diet activate differential aortic UPR pathways, leading to distinct vascular responses. Compared with dietary intervention, aging is associated with impaired endoplasmic reticulum protein folding and increased aortic apoptosis.


Assuntos
Hipercolesterolemia , Apolipoproteínas E/genética , Apoptose , Estresse do Retículo Endoplasmático , Hipercolesterolemia/genética , Isomerases de Dissulfetos de Proteínas/genética , Resposta a Proteínas não Dobradas , Animais , Camundongos , Camundongos Knockout para ApoE
7.
PLoS One ; 12(9): e0184921, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922420

RESUMO

The chance discovery of a 1.5-3.5 years old mummified girl presents a unique opportunity to further our understanding of health and disease among children in 19th Century San Francisco. This study focuses on carbon and nitrogen stable isotope signatures in serial samples of hair that cover the last 14 months of her life. Results suggest an initial omnivorous diet with little input from marine resources or C4 plants. Around six months before death δ15N starts a steady increase, with a noticeable acceleration just two months before she died. The magnitude of δ15N change, +1.5‰ in total, is consistent with severe undernourishment or starvation. Cemetery records from this time period in San Francisco indicate high rates of infant and child mortality, mainly due to bacterial-borne infectious diseases, about two orders of magnitude higher than today. Taken together, we hypothesize that the girl died after a prolonged battle with such an illness. Results highlight the tremendous impacts that modern sanitation and medicine have had since the 1800s on human health and lifespan in the United States.


Assuntos
Cabelo , Mortalidade Infantil/história , Transtornos da Nutrição do Lactente , Múmias , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Pré-Escolar , Feminino , Cabelo/química , Cabelo/metabolismo , História do Século XIX , Humanos , Lactente , Transtornos da Nutrição do Lactente/história , Transtornos da Nutrição do Lactente/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , São Francisco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA