Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Ind Electron ; 64(9): 7304-7312, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33479553

RESUMO

A piezoelectric sensor with a floating element was developed for direct measurement of flow induced shear stress. The piezoelectric sensor was designed to detect the pure shear stress while suppressing the effect of normal stress generated from the vortex lift-up by applying opposite poling vectors to the piezoelectric elements. During the calibration stage, the prototyped sensor showed a high sensitivity to shear stress (91.3 ± 2.1 pC/Pa) due to the high piezoelectric coefficients (d 31=-1330 pC/N) of the constituent 0.67Pb(Mg1∕3Nb2∕3)O3-0.33PbTiO3 (PMN-33%PT) single crystal. By contrast, the sensor showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the sensing structure. The usable frequency range of the sensor is up to 800 Hz. In subsonic wind tunnel tests, an analytical model was proposed based on cantilever beam theory with an end-tip-mass for verifying the resonance frequency shift in static stress measurements. For dynamic stress measurements, the signal-to-noise ratio (SNR) and ambient vibration-filtered pure shear stress sensitivity were obtained through signal processing. The developed piezoelectric shear stress sensor was found to have an SNR of 15.8 ± 2.2 dB and a sensitivity of 56.5 ± 4.6 pC/Pa in the turbulent flow.

2.
Bioinspir Biomim ; 13(5): 056013, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30024386

RESUMO

This paper looks to the natural world for solutions to many of the challenges associated with the design of fixed-wing cross-domain vehicles. One example is the common murre, a seabird that flies from nesting locations to feeding areas, dives underwater to catch prey and returns. This hunting expedition provides an outline of a possible mission for a cross-domain vehicle. While the challenges of cross-domain vehicles are many, the focus of this paper was on buoyancy management and propulsion. Potential solutions to each challenge, inspired by multiple animals that cross between aerial and underwater domains, are investigated. From these solutions, three design concepts are considered, a quadrotor/fixed-wing hybrid, a vertical takeoff and landing (VTOL) tailsitter aircraft, and a waterjet-assisted takeoff vehicle. A comparison was made between the capability of each concept to complete two missions based on the common murres' hunting expedition. As a result of this comparison, the VTOL tailsitter design was selected for further study. In-depth design was conducted and a prototype vehicle was built. The completed vehicle prototype successfully conducted submerged operation as well as four air flights. Flights consisted of egress from water, flight in air, ingress into water in each flight, and water locomotion. A total of 11 min, 23 s of flight time was recorded as well as underwater swims down to 12 ft (3.7 m) below the surface.


Assuntos
Aves/fisiologia , Desenho de Equipamento/métodos , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Mergulho/fisiologia , Locomoção/fisiologia , Natação/fisiologia , Água/fisiologia
3.
Bioinspir Biomim ; 7(3): 036003, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22498691

RESUMO

A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions.


Assuntos
Aeronaves , Materiais Biomiméticos , Biomimética/instrumentação , Aves/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Movimento/fisiologia , Asas de Animais/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA