Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 156(2): 399-406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35013838

RESUMO

BACKGROUND: The standard of care for elderly glioblastoma patients is 40 Gy in 15 fraction radiotherapy with temozolomide (TMZ). However, this regimen has a lower biologic equivalent dose (BED) compared to the Stupp regimen of 60 Gy in 30 fractions. We hypothesize that accelerated hypofractionated radiation of 52.5 Gy in 15 fractions (BED equivalent to Stupp) will have superior survival compared to 40 Gy in 15 fractions. METHODS: Elderly patients (≥ 65 years old) who received hypofractionated radiation with TMZ from 2010 to 2020 were included in this analysis. Overall survival (OS) and progression free survival were defined as the time elapsed between surgery/biopsy and death from any cause or progression. Baseline characteristics were compared between patients who received 40 and 52.5 Gy. Univariable and multivariable analyses were performed. RESULTS: Sixty-six newly diagnosed patients were eligible for analysis. Thirty-nine patients were treated with 40 Gy in 15 fractions while twenty-seven were treated with 52.5 Gy in 15 fractions. Patients had no significant differences in age, sex, methylation status, or performance status. OS was superior in the 52.5 Gy group (14.1 months) when compared to the 40 Gy group (7.9 months, p = 0.011). Isoeffective dosing to 52.5 Gy was shown to be an independent prognostic factor for improved OS on multivariable analysis. CONCLUSIONS: Isoeffective dosing to 52.5 Gy in 15 fractions was associated with superior OS compared to standard of care 40 Gy in 15 fractions. These hypothesis generating data support accelerated hypofractionation in future prospective trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Feminino , Idoso Fragilizado , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Masculino , Hipofracionamento da Dose de Radiação , Temozolomida/uso terapêutico , Resultado do Tratamento
2.
Biomedicines ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885067

RESUMO

Glioblastoma (GBM) is an aggressive primary brain tumor that is associated with a poor prognosis and quality of life. The standard of care has changed minimally over the past two decades and currently consists of surgery followed by radiotherapy (RT), concomitant and adjuvant temozolomide, and tumor treating fields (TTF). Factors such as tumor hypoxia and the presence of glioma stem cells contribute to the radioresistant nature of GBM. In this review, we discuss the current treatment modalities, mechanisms of radioresistance, and studies that have evaluated promising radiosensitizers. Specifically, we highlight small molecules and immunotherapy agents that have been studied in conjunction with RT in clinical trials. Recent preclinical studies involving GBM radiosensitizers are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA