RESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) exhibits substantial variability in rates of disease progression and response to treatment. This has hindered treatment development and complicated interpretation of drug effects in clinical trials. OBJECTIVE: We hypothesized that a multivariate combination of early-age clinical outcome measurements can explain differential disease progression. METHODS: Data on boys with DMD (ages 4-<10 years), both treated with steroidal anti-inflammatories and untreated, were obtained from CINRG Duchenne Natural History Study (nâ=â209) and vamorolone VBP15-002/003/LTE (nâ=â46) studies. Velocities from three timed function tests (TFTs; stand from supine, run/walk 10 meters, and climb 4 stairs) were simultaneously modeled in a longitudinal latent class analysis. RESULTS: Three classes of differentially progressing early age DMD motor trajectories were identified. Quicker decline/progression was associated with lower baseline TFT velocities, earlier loss of ability to finish a TFT, and lower predicted velocities. Earlier substantial steroid exposure was associated with greater TFT velocities while the moderate progression class was observed to have the largest difference in performance between boys treated early with steroids vs. not. Sample size calculations with the class showing the largest treatment response showed a large reduction in required sample size as compared to using summaries from all participants. Gene mutations were also investigated in post-hoc analyses, with mutations near the beginning of the DMD gene (Dp427 absent and Dp140/Dp71 present) found to be enriched in the slowest progressing class. CONCLUSIONS: This study provides insight into the variation in DMD progression through a latent class analysis. Our findings show class-related trajectories of motor outcomes and pharmacological response to corticosteroids, and suggest that enrichment strategies and/or subgroup analyses could be considered further in design of therapeutic interventions in DMD.
Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Criança , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Corticosteroides/uso terapêutico , Anti-Inflamatórios , Caminhada/fisiologia , Progressão da DoençaRESUMO
BACKGROUND: Natural history studies in neuromuscular disorders are vital to understand the disease evolution and to find sensitive outcome measures. We performed a longitudinal assessment of quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31 P MRS) outcome measures and evaluated their relationship with function in lower limb skeletal muscle of dysferlinopathy patients. METHODS: Quantitative MRI/31 P MRS data were obtained at 3 T in two different sites in 54 patients and 12 controls, at baseline, and three annual follow-up visits. Fat fraction (FF), contractile cross-sectional area (cCSA), and muscle water T2 in both global leg and thigh segments and individual muscles and 31 P MRS indices in the anterior leg compartment were assessed. Analysis included comparisons between patients and controls, assessments of annual changes using a linear mixed model, standardized response means (SRM), and correlations between MRI and 31 P MRS markers and functional markers. RESULTS: Posterior muscles in thigh and leg showed the highest FF values. FF at baseline was highly heterogeneous across patients. In ambulant patients, median annual increases in global thigh and leg segment FF values were 4.1% and 3.0%, respectively (P < 0.001). After 3 years, global thigh and leg FF increases were 9.6% and 8.4%, respectively (P < 0.001). SRM values for global thigh FF were over 0.8 for all years. Vastus lateralis muscle showed the highest SRM values across all time points. cCSA decreased significantly after 3 years with median values of 11.0% and 12.8% in global thigh and global leg, respectively (P < 0.001). Water T2 values in ambulant patients were significantly increased, as compared with control values (P < 0.001). The highest water T2 values were found in the anterior part of thigh and leg. Almost all 31 P MRS indices were significantly different in patients as compared with controls (P < 0.006), except for pHw , and remained, similar as to water T2 , abnormal for the whole study duration. Global thigh water T2 at baseline was significantly correlated to the change in FF after 3 years (ρ = 0.52, P < 0.001). There was also a significant relationship between the change in functional score and change in FF after 3 years in ambulant patients (ρ = -0.55, P = 0.010). CONCLUSIONS: This multi-centre study has shown that quantitative MRI/31 P MRS measurements in a heterogeneous group of dysferlinopathy patients can measure significant changes over the course of 3 years. These data can be used as reference values in view of future clinical trials in dysferlinopathy or comparisons with quantitative MRI/S data obtained in other limb-girdle muscular dystrophy subtypes.
Assuntos
Distrofia Muscular do Cíngulo dos Membros , Fósforo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/patologia , Coxa da Perna , ÁguaRESUMO
This study aims to determine clinically relevant phenotypic differences between the two most common phenotypic classifications in dysferlinopathy, limb girdle muscular dystrophy R2 (LGMDR2) and Miyoshi myopathy (MMD1). LGMDR2 and MMD1 are reported to involve different muscles, with LGMDR2 showing predominant limb girdle weakness and MMD1 showing predominant distal lower limb weakness. We used heatmaps, regression analysis and principle component analysis of functional and Magnetic Resonance Imaging data to perform a cross-sectional review of the pattern of muscle involvement in 168 patients from the Jain Foundation's international Clinical Outcomes Study for Dysferlinopathy. We demonstrated that there is no clinically relevant difference in proximal vs distal involvement between diagnosis. There is a continuum of distal involvement at any given degree of proximal involvement and patients do not fall into discrete distally or proximally affected groups. There appeared to be geographical preference for a particular diagnosis, with MMD1 being more common in Japan and LGMDR2 in Europe and the USA. We conclude that the dysferlinopathies do not form two distinct phenotypic groups and therefore should not be split into separate cohorts of LGMDR2 and MM for the purposes of clinical management, enrolment in clinical trials or access to subsequent treatments.
Assuntos
Miopatias Distais/diagnóstico , Atrofia Muscular/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Fenótipo , Adulto JovemRESUMO
INTRODUCTION: Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. METHODS: One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. CONCLUSION: FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.
Assuntos
Músculo Esquelético/fisiologia , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Exercício Físico , Feminino , Humanos , Hipertrofia , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Locos de Características Quantitativas , Estados UnidosRESUMO
Specific therapies are not available for inflammatory muscle diseases. We and others have shown that the pro-inflammatory NF-kappaB pathway is highly activated in these conditions. Since NF-kappaB is an important therapeutic target, we decided to utilize an in vitro screening assay to identify potential inhibitors that block TNF-alpha induced NF-kappaB activation in a C2C12 muscle line stably expressing an NF-kappaB luciferase reporter gene. Upon evaluation of multiple anti-inflammatory agents in undifferentiated myoblasts as well as differentiated myotubes , we found different levels of inhibition depending on the state of differentiation. Interestingly, we found that some drugs that are known to inhibit NF-kappaB in immune cells were not effective in muscle cells. Drug toxicity was assessed for using an MTT cell viability assay, and the validity of the luciferase assay was verified by immunostaining for NF-kappaB nuclear translocation in myoblasts. In conclusion, we have determined the optimal assay conditions for detecting potentially valuable NF-kappaB inhibitors for the first time in a muscle cell line that may have significant therapeutic potential for inflammatory muscle diseases.