Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Hum Mol Genet ; 33(11): 945-957, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453143

RESUMO

Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.


Assuntos
Simulação por Computador , Linhagem , Doenças Retinianas , Humanos , Doenças Retinianas/genética , Feminino , Masculino , Mutação , Genes Dominantes , Predisposição Genética para Doença , Biologia Computacional/métodos , Fenótipo , Adulto
2.
Ophthalmology ; 131(5): 622-633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38092079

RESUMO

PURPOSE: To develop guidelines for ocular surveillance and early intervention for individuals with von Hippel-Lindau (VHL) disease. DESIGN: Systematic review of the literature. PARTICIPANTS: Expert panel of retina specialists and ocular oncologists. METHODS: A consortium of experts on clinical management of all-organ aspects of VHL disease was convened. Working groups with expertise in organ-specific features of VHL disease were tasked with development of evidence-based guidelines for each organ system. The ophthalmology subcommittee formulated questions for consideration and performed a systematic literature review. Evidence was graded for topic quality and relevance and the strength of each recommendation, and guideline recommendations were developed. RESULTS: The quality of evidence was limited, and no controlled clinical trial data were available. Consensus guidelines included: (1) individuals with known or suspected VHL disease should undergo periodic ocular screening (evidence type, III; evidence strength, C; degree of consensus, 2A); (2) patients at risk of VHL disease, including first-degree relatives of patients with known VHL disease, or any patient with single or multifocal retinal hemangioblastomas (RHs), should undergo genetic testing for pathologic VHL disease gene variants as part of an appropriate medical evaluation (III/C/2A); (3) ocular screening should begin within 12 months after birth and continue throughout life (III/C/2A); (4) ocular screening should occur approximately every 6 to 12 months until 30 years of age and then at least yearly thereafter (III/C-D/2A); (5) ocular screening should be performed before a planned pregnancy and every 6 to 12 months during pregnancy (IV/D/2A); (6) ultra-widefield color fundus photography may be helpful in certain circumstances to monitor RHs, and ultra-widefield fluorescein angiography may be helpful in certain circumstances to detect small RHs (IV/D/2A); (7) patients should be managed, whenever possible, by those with subspecialty training, with experience with VHL disease or RHs, or with both and ideally within the context of a multidisciplinary center capable of providing multiorgan surveillance and access to genetic testing (IV/D/2A); (8) extramacular or extrapapillary RHs should be treated promptly (III/C/2A). CONCLUSIONS: Based on available evidence from observational studies, broad agreement was reached for a strategy of lifelong surveillance and early treatment for ocular VHL disease. These guidelines were endorsed by the VHL Alliance and the International Society of Ocular Oncology and were approved by the American Academy of Ophthalmology Board of Trustees. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Brain ; 145(9): 3308-3327, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35851598

RESUMO

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Assuntos
Transtornos do Neurodesenvolvimento , Proteínas rac de Ligação ao GTP , Animais , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Fenótipo , Quinases Ativadas por p21/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
4.
Exp Eye Res ; 225: 109248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108770

RESUMO

Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.


Assuntos
Degeneração Macular , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Proteínas do Sistema Complemento/metabolismo , Corioide/metabolismo , Proteínas/genética , Genômica , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
5.
Genet Med ; 22(7): 1235-1246, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307445

RESUMO

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Assuntos
Degeneração Macular , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Genômica , Humanos , Íntrons , Degeneração Macular/genética , Mutação , Linhagem , Doença de Stargardt
6.
Exp Eye Res ; 191: 107894, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31862397

RESUMO

Age-related macular degeneration (AMD) is a complex disease with multiple genetic and environmental risk factors. In the age of molecular genetics, many investigators have established a link between genes and development or progression of the disease. This later evolved to determine whether phenotypic features of AMD have distinct genetic profiles. Molecular genetics have subsequently been introduced as factors in risk assessment models, increasing the predictive value of these tools. Models seek to predict either development or progression of disease, and different AMD-related genes aid our understanding of these respective features. Several investigators have attempted to link molecular genetics with treatment response, but results and their clinical significance vary. Ocular and systemic biomarkers may interact with established genes, promising future routes of ongoing clinical assessment. Our understanding of AMD molecular genetics is not yet sufficient to recommend routine testing, despite its utility in the research setting. Clinicians must be wary of misusing population-based risk models from genetic and biomarker associations, as they are not necessarily relevant for individual counseling. This review addresses the known uses of predictive genetics, and suggests future directions.


Assuntos
Terapia Genética , Degeneração Macular/genética , Degeneração Macular/prevenção & controle , Progressão da Doença , Humanos , Fatores de Risco
7.
Exp Eye Res ; 189: 107852, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647904

RESUMO

Mutations in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD). We describe a novel fibrovascular proliferation in the retina of two affected members of a KCNJ13-related LCA family with a homozygous c.458C > T, p.(Thr153Ile) missense mutation. Optical coherence tomography retinal imaging of the kcnj13 mutant zebrafish (obelixtd15 c.502T > C, p.[Phe168Leu]) revealed a late onset retinal degeneration at 12 months, with retinal thinning and associated retinovascular changes, including increased vessel calibre and vitreous deposits. Both human and zebrafish variants are missense and located within the conserved transmembrane M2 protein domain, suggesting that disruption of this region may contribute to retinovascular changes as an additional feature to the previously described LCA phenotype. Close monitoring of other patients with similar mutations may be required to minimise the ensuing retinal damage.


Assuntos
Amaurose Congênita de Leber/genética , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Retina/metabolismo , Degeneração Retiniana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , DNA/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Angiofluoresceinografia/métodos , Fundo de Olho , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Domínios Proteicos , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica/métodos , Adulto Jovem , Peixe-Zebra
8.
Retina ; 39(12): 2254-2263, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31259811

RESUMO

PURPOSE: To review the current state of diagnosis and management of retinal hemangioblastoma and retinal vascular proliferation arising from von Hippel-Lindau (VHL) disease. METHODS: A review of the literature was performed. Consensus was reached among authors regarding current practice, with reference to published data where possible. RESULTS: von Hippel-Lindau disease and its ocular manifestations are relatively rare, and there is limited evidence in the literature on which to base management. There was consensus on core principles, including 1) recognition and diagnosis of von Hippel-Lindau disease when present, with appropriate referral for care of this potentially lethal systemic condition; 2) regular ophthalmic evaluation for individuals with von Hippel-Lindau disease, to identify and offer timely treatment for new or active retinal hemangioblastomas; 3) ablative treatment of retinal hemangioblastomas that can be safely destroyed, to lower risk of vision loss; 4) observation or consideration of nonablative treatments for retinal hemangioblastomas that cannot be safely destroyed; and 5) observation of asymptomatic retinal vascular proliferation, with consideration of vitrectomy for lesions exerting effects on vision. CONCLUSION: Ocular outcomes can be gratifying in many cases with appropriate management. Improved understanding of the molecular basis for the disease creates an opportunity for rational design of better therapies.


Assuntos
Hemangioblastoma/diagnóstico , Hemangioblastoma/terapia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/terapia , Doença de von Hippel-Lindau/diagnóstico , Humanos , Vasos Retinianos/patologia
9.
Retina ; 39(12): 2243-2253, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31095066

RESUMO

PURPOSE: To provide an update summarizing the biologic pathways governing von Hippel-Lindau (VHL) disease pathogenesis and to provide an overview of systemic manifestations as well as screening recommendations. METHODS: A PubMed search of the English language literature was reviewed using the following search terms: von Hippel-Lindau, von Hippel-Lindau disease, and VHL. Of 6,696 publications, the most current and pertinent information related to the pathogenesis and systemic aspects of VHL disease were included in this review. RESULTS: von Hippel-Lindau disease is one of the most frequently occurring multisystem familial cancer syndromes. The disease results from germline mutation in the VHL tumor suppressor gene on the short arm of chromosome 3. Mutation in the VHL gene affects multiple cellular processes including transcriptional regulation, extracellular matrix formation, apoptosis, and, in particular, the cellular adaptive response to hypoxia. As a result, there is widespread development of vascular tumors affecting the retina, brain, and spine, as well as a spectrum of benign and malignant tumors and/or cysts in visceral organs. CONCLUSION: The ophthalmologist plays a key role in VHL disease diagnosis, as retinal hemangioblastoma is frequently the first disease manifestation. Screening guidelines for individuals with known VHL disease, and those at risk of VHL disease, help to ensure early detection of potentially vision-threatening and life-threatening disease.


Assuntos
Doença de von Hippel-Lindau/etiologia , Cromossomos Humanos Par 3/genética , Hemangioblastoma/diagnóstico , Hemangioblastoma/etiologia , Hemangioblastoma/genética , Humanos , Mutação , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/etiologia , Neoplasias da Retina/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/diagnóstico , Doença de von Hippel-Lindau/genética
10.
Genet Epidemiol ; 41(4): 282-296, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198095

RESUMO

Disease risk estimation plays an important role in disease prevention. Many studies have found that the ability to predict risk improves as the number of risk single-nucleotide polymorphisms (SNPs) in the risk model increases. However, the width of the confidence interval of the risk estimate is often not considered in the evaluation of the risk model. Here, we explore how the risk and the confidence interval width change as more SNPs are added to the model in the order of decreasing effect size, using both simulated data and real data from studies of abdominal aortic aneurysms and age-related macular degeneration. Our results show that confidence interval width is positively correlated with model size and the majority of the bigger models have wider confidence interval widths than smaller models. Once the model size is bigger than a certain level, the risk does not shift markedly, as 100% of the risk estimates of the one-SNP-bigger models lie inside the confidence interval of the one-SNP-smaller models. We also created a confidence interval-augmented reclassification table. It shows that both more effective SNPs with larger odds ratios and less effective SNPs with smaller odds ratios contribute to the correct decision of whom to screen. The best screening strategy is selected and evaluated by the net benefit quantity and the reclassification rate. We suggest that individuals whose upper bound of their risk confidence interval is above the screening threshold, which corresponds to the population prevalence of the disease, should be screened.


Assuntos
Predisposição Genética para Doença , Modelos Genéticos , Idoso , Aneurisma da Aorta Abdominal/genética , Simulação por Computador , Intervalos de Confiança , Bases de Dados Genéticas , Feminino , Humanos , Degeneração Macular/genética , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Tamanho da Amostra
11.
Hum Mol Genet ; 23(25): 6797-806, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25082829

RESUMO

Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of ABCA4 in STGD patients identifies compound heterozygous or homozygous disease-associated alleles in 65-70% of patients and only one mutation in 15-20% of patients. This study was designed to find the missing disease-causing ABCA4 variation by a combination of next-generation sequencing (NGS), array-Comparative Genome Hybridization (aCGH) screening, familial segregation and in silico analyses. The entire 140 kb ABCA4 genomic locus was sequenced in 114 STGD patients with one known ABCA4 exonic mutation revealing, on average, 200 intronic variants per sample. Filtering of these data resulted in 141 candidates for new mutations. Two variants were detected in four samples, two in three samples, and 20 variants in two samples, the remaining 117 new variants were detected only once. Multimodal analysis suggested 12 new likely pathogenic intronic ABCA4 variants, some of which were specific to (isolated) ethnic groups. No copy number variation (large deletions and insertions) was detected in any patient suggesting that it is a very rare event in the ABCA4 locus. Many variants were excluded since they were not conserved in non-human primates, were frequent in African populations and, therefore, represented ancestral, and not disease-associated, variants. The sequence variability in the ABCA4 locus is extensive and the non-coding sequences do not harbor frequent mutations in STGD patients of European-American descent. Defining disease-associated alleles in the ABCA4 locus requires exceptionally well characterized large cohorts and extensive analyses by a combination of various approaches.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Loci Gênicos , Variação Genética , Degeneração Macular/congênito , Mutação , Alelos , População Negra , Estudos de Casos e Controles , Hibridização Genômica Comparativa , Éxons , Feminino , Expressão Gênica , Genes Recessivos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Íntrons , Degeneração Macular/etnologia , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Linhagem , Doença de Stargardt , População Branca
12.
BMC Bioinformatics ; 16: 91, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25887129

RESUMO

BACKGROUND: When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources. RESULTS: We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format. CONCLUSIONS: dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register . Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html .


Assuntos
Bases de Dados Genéticas , Genótipo , Linhagem , Fenótipo , Feminino , Humanos , Masculino , Software
13.
Exp Eye Res ; 137: 57-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26070985

RESUMO

Animal models of corneal surface damage reliably exhibit altered tear quality and quantity, apoptosis, nerve degeneration, immune responses and many other symptoms of dry eye disease. An important clinical symptom of dry eye disease is photoallodynia (photophobia), which can be modeled in mice using behavioral light aversion as a surrogate. Intrinsically photosensitive retinal ganglion cells (ipRGCs) function as irradiance detectors. They have been shown to mediate innate light aversion and are ideal candidates to initiate or modulate light aversion in disease or dysfunctional states. This study addresses the relationship between light aversion, corneal mechanical sensitivity and corneal surface damage in a preclinical mouse model using bilateral topical application of benzalkonium chloride (BAC). Corneal application of BAC resulted in similar levels of corneal surface damage by fluorescein staining in both wild type mice and mice lacking ipRGCs. Light aversion was an early symptom of corneal surface damage, was proportional to the level of corneal damage and dependent on melanopsin-expressing cells. A decrease in both corneal mechanosensitivity and light aversion was observed in mice lacking melanopsin-expressing cells, suggesting a connection in the neural circuits mediating the two most common symptoms of corneal surface damage.


Assuntos
Córnea/patologia , Lesões da Córnea/fisiopatologia , Fotofobia/fisiopatologia , Células Ganglionares da Retina/fisiologia , Animais , Lesões da Córnea/patologia , Modelos Animais de Doenças , Transdução de Sinal Luminoso , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Fotofobia/etiologia , Células Ganglionares da Retina/efeitos da radiação
14.
Hum Mol Genet ; 21(16): 3647-54, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22619378

RESUMO

X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson-Golabi-Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.


Assuntos
Mutação da Fase de Leitura , Proteínas/genética , Retinose Pigmentar/etiologia , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos X , Éxons , Humanos , Íntrons , Masculino , Dados de Sequência Molecular , Sítios de Splice de RNA , Retinose Pigmentar/genética , Análise de Sequência de DNA
15.
BMC Med Genet ; 15: 11, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24444108

RESUMO

BACKGROUND: A pediatric patient presented with rapidly progressive vision loss, nyctalopia and retinal dystrophy. This is the first report of homozygosity for the p.Arg602Trp mutation in the ABCA4 gene. The child became legally blind within a period of 2 years. CASE PRESENTATION: An eight year-old Hispanic female presented with bilateral decreased vision following a febrile gastrointestinal illness with nausea and vomiting. Extensive workup involved pediatric infectious disease and rheumatology consultations.Initial visual acuity was 20/60 at distance and 20/30 at near in both eyes. Rapidly progressive vision loss occurred during a 2-year period resulting in visual acuities of 20/200 at distance in both eyes. Fundus exam disclosed attenuated vessels and multiple subretinal blister-like elevations. Optical coherence tomography showed far more lesions than were clinically evident with different levels of elevation. Autofluorescence imagery showed dramatic and widespread geographic areas of atrophy. The deposits that appeared drusen-like on clinical exam were hyperfluorescent, consistent with lipofuscin deposits containing A2e (N-retinylidene-N-retinylethanolamine) indicative of RPE cell dysfunction. Electroretinography was consistent with cone dystrophy, with relative preservation of rod function. Blood analysis and rheumatology evaluation found no evidence of a diffuse post-infectious/inflammatory process. The unique and rapid progression of her subretinal blister-like lesions was documented by fluorescein angiography, optical coherence tomography, autofluorescence imagery, and fundus photography. Family pedigree history disclosed consanguinity, her parents being first cousins. DNA analysis by whole exomic sequencing revealed homozygosity of p.Arg602Trp in the ABCA4 gene. CONCLUSION: The pediatric patient presented with a striking clinical appearance and dramatic rate of progression that was clinically more characteristic of an infectious or inflammatory process. This case expands the diverse range of phenotypes attributed to ABCA4 mutations and further supports the role of whole exome sequencing as a powerful new tool available to aid clinicians in establishing diagnosis for challenging cases.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Análise Mutacional de DNA , Progressão da Doença , Exoma/genética , Homozigoto , Mutação de Sentido Incorreto , Distrofias Retinianas/genética , Criança , Feminino , Humanos , Masculino , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/patologia , Distrofias Retinianas/fisiopatologia
16.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766240

RESUMO

Central serous chorioretinopathy (CSC) is a fluid maculopathy whose etiology is not well understood. Abnormal choroidal veins in CSC patients have been shown to have similarities with varicose veins. To identify potential mechanisms, we analyzed genotype data from 1,477 CSC patients and 455,449 controls in FinnGen. We identified an association for a low-frequency (AF=0.5%) missense variant (rs113791087) in the gene encoding vascular endothelial protein tyrosine phosphatase (VE-PTP) (OR=2.85, P=4.5×10-9). This was confirmed in a meta-analysis of 2,452 CSC patients and 865,767 controls from 4 studies (OR=3.06, P=7.4×10-15). Rs113791087 was associated with a 56% higher prevalence of retinal abnormalities (35.3% vs 22.6%, P=8.0×10-4) in 708 UK Biobank participants and, surprisingly, with varicose veins (OR=1.31, P=2.3×10-11) and glaucoma (OR=0.82, P=6.9×10-9). Predicted loss-of-function variants in VEPTP, though rare in number, were associated with CSC in All of Us (OR=17.10, P=0.018). These findings highlight the significance of VE-PTP in diverse ocular and systemic vascular diseases.

17.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540785

RESUMO

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Assuntos
Degeneração Macular , Humanos , Mutação , Penetrância , Linhagem , Degeneração Macular/genética , Retina , Fenótipo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas do Olho , Proteínas Relacionadas a Caderinas , Proteínas do Tecido Nervoso/genética
18.
Mol Vis ; 19: 980-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23687434

RESUMO

BACKGROUND: Many genes have been reported as harboring autosomal dominant mutations causing retinal dystrophy. As newly available gene panel sequencing and whole exome sequencing will open these genes up to greater scrutiny, we assess the rate of rare coding variation in these genes among unaffected individuals to provide context for variants that will be discovered when clinical subjects are sequenced. METHODS: Publicly available data from the Exome Variant Project were analyzed, focusing on 36 genes known to harbor mutations causing autosomal dominant macular dystrophy. RESULTS: Rates of rare (minor allele frequency ≤0.1%) and private missense variants within autosomal dominant retinal dystrophy genes were found to occur at a high frequency in unaffected individuals, while nonsense variants were not. CONCLUSIONS: We conclude that rare missense variations in most of these genes identified in individuals with retinal dystrophy cannot be confidently classified as disease-causing in the absence of additional information such as linkage or functional validation.


Assuntos
Genes Dominantes/genética , Mutação de Sentido Incorreto/genética , Distrofias Retinianas/genética , Códon sem Sentido/genética , Estudos de Coortes , Bases de Dados Genéticas , Humanos , Fases de Leitura Aberta/genética
19.
Ophthalmol Glaucoma ; 6(1): 68-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35750324

RESUMO

OBJECTIVE: To investigate the confounding effect of nonexudative age-related macular degeneration (AMD), specifically drusen and outer retinal atrophy, on the architecture and automated segmentation of the inner retinal layers as measured with OCT. DESIGN: Observational cross-sectional study. SUBJECTS: Two hundred sixty-three consecutive eyes with nonexudative AMD were identified through a retrospective chart review. Exclusion criteria were a diagnosis of glaucoma or glaucoma suspect, other retinal pathology affecting the macula, axial length > 26.5 mm or spherical equivalent less than -6 diopters, any other optic nerve or neurologic disorders, or poor image quality. METHODS: Drusen were automatically segmented on macular OCT B-scans with a publicly available and validated deep learning approach. Automated segmentation of the inner plexiform layer (IPL)/inner nuclear layer (INL) boundary was carried out with the device's proprietary software. MAIN OUTCOME MEASURES: Quality of segmentation of the IPL/INL boundary as a function of drusen size and presence of inner retinal layer displacement in the area of macular pathology (drusen or atrophy). RESULTS: One hundred twenty-five eyes (65 patients) met the inclusion criteria. Drusen size varied between 16 and 272 µm (mean, 118 µm). Automated segmentation had a 22% chance of failure if the drusen height was between 145 and 185 µm and was most likely to fail with drusen heights above 185 µm. When drusen height was normalized by total retinal thickness, segmentation failed 36% of the time when the drusen to total retinal thickness ratio was 0.45 or above. Images were likely to show displacement of inner retinal layers with drusen heights above 176 µm and a normalized drusen height ratio of 0.5 or higher. Eighty-seven percent of images with outer retinal atrophy displayed incorrect segmentation. CONCLUSIONS: Outer retinal diseases can alter the retinal topography and affect the segmentation accuracy of the inner retinal layers. Large drusen may cause segmentation error and compression of the inner macular layers. Geographic atrophy confounds automated segmentation in a high proportion of eyes. Clinicians should be cognizant of the effects of outer retinal disease on the inner retinal layer measurements when interpreting the results of macular OCT imaging in patients with glaucoma.


Assuntos
Glaucoma , Macula Lutea , Degeneração Macular , Doenças Retinianas , Humanos , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Degeneração Macular/diagnóstico , Glaucoma/diagnóstico , Glaucoma/patologia , Macula Lutea/patologia
20.
BMC Med Genet ; 13: 67, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863181

RESUMO

BACKGROUND: The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases. METHODS: We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis. RESULTS: Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified. CONCLUSIONS: Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques.


Assuntos
Acetiltransferases/genética , Exoma/genética , Proteínas do Olho/genética , Proteínas de Filamentos Intermediários/genética , Degeneração Macular/diagnóstico , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Distrofias Retinianas/diagnóstico , Adolescente , Adulto , Biomarcadores/metabolismo , Elongases de Ácidos Graxos , Feminino , Humanos , Degeneração Macular/genética , Masculino , Pessoa de Meia-Idade , Periferinas , Distrofias Retinianas/genética , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA