Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421461

RESUMO

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Assuntos
Candida albicans , Células Epiteliais , Virulência , Candida albicans/genética , Ergosterol , Imunoglobulina A Secretora
2.
Talanta ; 278: 126531, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002262

RESUMO

Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and ß-cyclodextrin-modified Ag nanoparticles (ß-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 µM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.


Assuntos
Histamina , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Histamina/análise , Histamina/química , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Compostos Azo/química , Ácidos Esteáricos/química , Animais , Peixes , Propriedades de Superfície
3.
Br J Pharmacol ; 181(12): 1857-1873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382564

RESUMO

BACKGROUND AND PURPOSE: The holotoxin A1, isolated from Apostichopus japonicus, exhibits potent antifungal activities, but the mechanism and efficacy against candidiasis are unclear. In this study we have studied the antifungal effects and mechanism of holotoxin A1 against Candida albicans and in murine oropharyngeal and intra-abdominal candidiasis. EXPERIMENTAL APPROACH: The antifungal effect of holotoxin A1 against C. albicans was tested in vitro. To explore the antifungal mechanism of holotoxin A1, the transcriptome, ROS levels, and mitochondrial function of C. albicans was evaluated. Effectiveness and systematic toxicity of holotoxin A1 in vivo was assessed in the oropharyngeal and intra-abdominal candidiasis models in mice. KEY RESULTS: Holotoxin A1 was a potent fungicide against C. albicans SC5314, clinical strains and drug-resistant strains. Holotoxin A1 inhibited oxidative phosphorylation and induced oxidative damage by increasing intracellular accumulation of ROS in C. albicans. Holotoxin A1 induced dysfunction of mitochondria by depolarizing the mitochondrial membrane potential and reducing the production of ATP. Holotoxin A1 directly inhibited the enzymatic activity of mitochondrial complex I and antagonized with the rotenone, an inhibitor of complex I, against C. albicans. Meanwhile, the complex I subunit NDH51 null mutants showed a decreased susceptibility to holotoxin A1. Furthermore, holotoxin A1 significantly reduced fungal burden and infections with no significant systemic toxicity in oropharyngeal and intra-abdominal candidiasis in murine models. CONCLUSION AND IMPLICATIONS: Holotoxin A1 is a promising candidate for the development of novel antifungal agents against both oropharyngeal and intra-abdominal candidiasis, especially when caused by drug-resistant strains.


Assuntos
Antifúngicos , Candida albicans , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Feminino , Camundongos , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Infecções Intra-Abdominais/tratamento farmacológico , Infecções Intra-Abdominais/microbiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Stichopus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA