RESUMO
There continues to be an unmet therapeutic need for an alternative treatment strategy for respiratory distress and lung disease. We are developing a portable cardiopulmonary support system that integrates an implantable oxygenator with a hybrid, dual-support, continuous-flow total artificial heart (TAH). The TAH has a centrifugal flow pump that is rotating about an axial flow pump. By attaching the hollow fiber bundle of the oxygenator to the base of the TAH, we establish a new cardiopulmonary support technology that permits a patient to be ambulatory during usage. In this study, we investigated the design and improvement of the blood flow pathway from the inflow-to-outflow of four oxygenators using a mathematical model and computational fluid dynamics (CFD). Pressure loss and gas transport through diffusion were examined to assess oxygenator design. The oxygenator designs led to a resistance-driven pressure loss range of less than 35 mmHg for flow rates of 1-7 L/min. All of the designs met requirements. The configuration having an outside-to-inside blood flow direction was found to have higher oxygen transport. Based on this advantageous flow direction, two designs (Model 1 and 3) were then integrated with the axial-flow impeller of the TAH for simulation. Flow rates of 1-7 L/min and speeds of 10,000-16,000 RPM were analyzed. Blood damage studies were performed, and Model 1 demonstrated the lowest potential for hemolysis. Future work will focus on developing and testing a physical prototype for integration into the new cardiopulmonary assist system.
Assuntos
Coração Artificial , Oxigenadores , Humanos , Desenho de Equipamento , HemodinâmicaRESUMO
Hemorrhagic shock (HS) is a severe life-threatening condition characterized by loss of blood volume and a lack of oxygen (O2) delivery to tissues. The objective of this study was to examine the impact of manipulating Starling forces in the microcirculation during HS to increase microvascular perfusion without restoring blood volume or increasing O2 carrying capacity. To decrease interstitial tissue pressure, we developed a non-contact system to locally apply negative pressure and manipulate the pressure balance in capillaries, while allowing for visualization of the microcirculation. Golden Syrian hamsters were instrumented with dorsal window chambers and subjected to a controlled hemorrhaged of 50% of the animal's blood volume without any fluid resuscitation. A negative pressure chamber was attached to the dorsal window chamber and a constant negative pressure was applied. Hemodynamic parameters (including microvascular diameter, blood flow, and functional capillary density [FCD]) were measured before and during the four hours following the hemorrhage, with and without applied negative pressure. Blood flow significantly increased in arterioles during negative pressure. The increase in flow through arterioles also improved microvascular perfusion as reflected by increased FCD. These results indicate that negative pressure increases flow in the microcirculation when fluid resuscitation is not available, thus restoring blood flow, oxygen delivery, and preventing the accumulation of metabolic waste. Applying negative pressure might allow for control of microvascular blood flow and oxygen delivery to specific tissue areas.
Assuntos
Hemodinâmica , Microcirculação , Microvasos/fisiopatologia , Choque Hemorrágico/fisiopatologia , Pele/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Masculino , Mesocricetus , Modelos Cardiovasculares , Fluxo Sanguíneo Regional , Índice de Gravidade de Doença , Fatores de TempoRESUMO
BACKGROUND: Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS: Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS: A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION: Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.
Assuntos
Proteínas Sanguíneas/uso terapêutico , Heme/isolamento & purificação , Hemoglobinas/isolamento & purificação , Hemólise/efeitos dos fármacos , Ferro/isolamento & purificação , Animais , Proteínas Sanguíneas/química , Humanos , Masculino , Mesocricetus , Resultado do TratamentoRESUMO
High-molecular-weight linear polymers (HMWLPs) have earned the name "drag-reducing polymers" because of their ability to reduce drag in turbulent flows. Recently, these polymers have become popular in bioengineering applications. This study investigated whether the addition of HMWLP in a venoarterial extracorporeal circulation (ECC) model could improve microvascular perfusion and oxygenation. Golden Syrian hamsters were instrumented with a dorsal skinfold window chamber and subjected to ECC using a circuit comprised of a peristaltic pump and a bubble trap. The circuit was primed with lactated Ringer solution (LR) containing either 5 ppm of polyethylene glycol (PEG) with a low molecular weight of 500 kDa (PEG500k) or 5 ppm of PEG with a high molecular weight of 3,500 kDa (PEG3500k). After 90 min of ECC at 15% of the animal's cardiac output, the results showed that the addition of PEG3500k to LR improved microvascular blood flow in arterioles and venules acutely (2 h after ECC), whereas functional capillary density showed improvement up to 24 h after ECC. Similarly, PEG3500k improved venular hemoglobin O2 saturation on the following day after ECC. The serum and various excised organs all displayed reduced inflammation with the addition of PEG3500k, and several of these organs also had a reduction in markers of damage with the HMWLPs compared to LR alone. These promising results suggest that the addition of small amounts of PEG3500k can help mitigate the loss of microcirculatory function and reduce the inflammatory response from ECC procedures.NEW & NOTEWORTHY High-molecular-weight linear polymers have gained traction in bioengineering applications. The addition of PEG3500k to lactated Ringer solution (LR) improved microvascular blood flow in arterioles and venules acutely after extracorporeal circulation (ECC) in a hamster model and improved functional capillary density up to 24 h after ECC. PEG3500k improved venular hemoglobin O2 saturation and oxygen delivery acutely after ECC and reduced inflammation in various organs compared to LR alone.
Assuntos
Circulação Extracorpórea , Polímeros , Cricetinae , Animais , Microcirculação/fisiologia , Peso Molecular , Lactato de Ringer , Circulação Extracorpórea/métodos , Mesocricetus , Perfusão , Polietilenoglicóis/farmacologia , Hemoglobinas , InflamaçãoRESUMO
This study aims to investigate the effects of hypoxically stored Red Blood Cells (RBCs) in a rat model of traumatic brain injury followed by severe hemorrhagic shock (HS) and resuscitation. RBCs were made hypoxic using an O2 depletion system (Hemanext Inc. Lexington, MA) and stored for 3 weeks. Experimental animals underwent craniotomy and blunt brain injury followed by severe HS. Rats were resuscitated with either fresh RBCs (FRBCs), 3-week-old hypoxically stored RBCs (HRBCs), or 3-week-old conventionally stored RBCs (CRBCs). Resuscitation was provided via RBCs transfusion equivalent to 70 % of the shed blood and animals were followed for 2 h. The control group was comprised of healthy animals that were not instrumented or injured. Post-resuscitation hemodynamics and lactate levels were improved with FRBCs and HRBCs, and markers of organ injury in the liver (Aspartate aminotransferase [AST]), lung (chemokine ligand 1 [CXCL-1] and Leukocytes count), and heart (cardiac troponin, Interleukin- 6 [IL-6] and Tumor Necrosis Factor Alpha[TNF-α]) were lower with FRBCs and HRBCs resuscitation compared to CRBCs. Following reperfusion, biomarkers for oxidative stress, lipid peroxidation, and RNA/DNA injury were assessed. Superoxide dismutase [SOD] levels in the HRBCs group were similar to the FRBCs group and levels in both groups were significantly higher than CRBCs. Catalase levels were not different than control values in the FRBCs and HRBCs groups but significantly lower with CRBCs. Thiobarbituric acid reactive substances [Tbars] levels were higher for both CRBCs and HRBCs. Hypoxically stored RBCs show few differences from fresh RBCs in resuscitation from TBI + HS and decreased organ injury and oxidative stress compared to conventionally stored RBCs.
Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/terapia , Eritrócitos/patologia , Lesões Encefálicas Traumáticas/terapia , Transfusão de Eritrócitos , Pulmão/patologiaRESUMO
Human serum albumin (HSA) is currently used as a plasma expander (PE) to increase blood volume during hypovolemic conditions, such as blood loss. However, its effectiveness is suboptimal in septic shock and burn patients due to their enhanced endothelial permeability, resulting in HSA extravasation into the tissue space leading to edema, and deposition of toxic HSA-bound metabolites. Hence, to expand HSA's applicability toward treating patients with compromised endothelial permeability, HSA has been previously polymerized to increase its molecular size thus compartmentalizing the polymerized HSA (PolyHSA) molecules in the vascular space. Previous studies bracketed PolyHSA between 100 kDa and 0.2 µm. In this research, PolyHSA was synthesized at two cross-link densities 43:1 and 60:1 (i.e., molar ratios of glutaraldehyde to HSA) and subsequently fractionated via tangential flow filtration (TFF) into two narrower brackets: bracket A (500 kDa and 0.2 µm) and bracket B (50-500 kDa). PolyHSA within the same size bracket at different cross-link densities exhibited similar solution viscosity, zeta potential, and osmolality but differed in hydrodynamic diameter. At the same cross-link density, the PolyHSA A bracket showed higher viscosity, lowered zeta potential, and a larger hydrodynamic diameter compared with the PolyHSA B bracket while maintaining osmolality. Interestingly, PolyHSA 43:1 B, PolyHSA 60:1 A, and PolyHSA 60:1 B brackets exhibited colloid osmotic pressure similar to HSA, indicating their potential to serve as PEs.
RESUMO
Extracorporeal membrane oxygenation (ECMO) is a procedure used to aid respiratory function in critical patients, involving extracorporeal circulation (ECC) of blood. There is a limited number of studies quantifying the hemodynamic effects of ECC procedures on the microcirculation. We sought to mimic veno-arterial-ECMO flow conditions by use of a scaled-down circuit primed with either lactate Ringer (LR) or 5% human serum albumin (HSA). The circuit was first tested using benchtop runs with blood, and subsequently used for in vivo experiments in Golden Syrian hamsters instrumented with a dorsal window chamber to allow for quantification of microvascular hemodynamics and functional capillary density (FCD). Results showed significant impairment in FCD, and a reduction of arteriolar and venular blood flow, with HSA providing significant higher blood flows and FCD compared with LR. Changes in hematocrit and RBC labeling after ECC reflected a shift in plasma volume, which may stem from a loss in intravascular oncotic pressure due to priming fluids. The distribution of hemoglobin oxygen saturation in the microvasculature showed a significant decrease in venules after ECC. In addition, major organs such as the kidney and heart showed increases in both inflammatory and damage markers. These results suggest that ECC impairs microvasculature function and promotes ischemia and hypoxia in the tissues, which can be vital to understanding comorbid clinical outcomes from ECC procedures such as acute kidney injury and multiorgan dysfunction.NEW & NOTEWORTHY ECC reduces microvascular perfusion, with no full recovery 24 h after ECC. HSA performed better as compared with LR in terms of FCD and venule flow, as well as venule oxygen saturation. Increases in inflammatory and damage markers in key organs were observed within all organs analyzed.
Assuntos
Circulação Extracorpórea , Microvasos , Animais , Capilares/fisiologia , Cricetinae , Circulação Extracorpórea/métodos , Humanos , Microcirculação/fisiologia , Oxigênio , PerfusãoRESUMO
Extracorporeal circulation (ECC) procedures, such as cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO), take over the function of one or more organs, providing clinicians time to treat underlying pathophysiological conditions. ECMO and CPB carry significant mortality rates for patients, despite prior decades of research focused on the resulting failure of critical organs. Since the focus of these procedures is to support blood flow and provide oxygen-rich blood to tissues, a shift in research toward the effects of ECMO and CPB on the microcirculation is warranted. Along with provoking systemic responses, both procedures disrupt the integrity of red blood cells, causing release of hemoglobin (Hb) from excessive foreign surface contact and mechanical stresses. The effects of hemolysis are especially pronounced in the microcirculation, where plasma Hb leads to nitric oxide scavenging, oxidization, formation of reactive oxygen species, and inflammatory responses. A limited number of studies have investigated the implications of ECMO in the microcirculation, but more work is needed to minimize ECMO-induced reduction of microcirculatory perfusion and consequently oxygenation. The following review presents existing information on the implications of ECMO and CPB on microvascular function and proposes future studies to understand and leverage key mechanisms to improve patient outcomes.
Assuntos
Circulação Extracorpórea , Oxigenação por Membrana Extracorpórea , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Microcirculação , PerfusãoRESUMO
Infection with COVID-19 has resulted in over 276,000 deaths in the United States and over 1.5 million deaths globally, with upwards of 15% of patients requiring hospitalization. Severe COVID-19 infection is, in essence, a microvascular disease. This contention has been emphasized throughout the course of the pandemic, particularly due to the clinical manifestation of severe infection. In fact, it has been hypothesized and shown in particular instances that microvascular function is a significant prognosticator for morbidity and mortality. Initially thought to be isolated to the pulmonary system and resulting in ARDS, patients with COVID-19 have been observed to have acute cardiac, renal, and thrombolytic complications. Therefore, severe COVID-19 is a vascular disease that has systemic implications. The objective of this review is to provide a mechanistic background for the microvascular nature of severe COVID-19 infection, with a particular emphasis on dysfunction of the endothelial glycocalyx and nitric oxide mediated pathogenesis.
Assuntos
COVID-19 , COVID-19/complicações , Humanos , Inflamação , Óxido Nítrico , PandemiasRESUMO
Microvascular fluid exchange is primarily dependent on Starling forces and both the active and passive myogenic response of arterioles and post-capillary venules. Arterioles are classically considered resistance vessels, while venules are considered capacitance vessels with high distensibility and low tonic sympathetic stimulation at rest. However, few studies have investigated the effects of modulating interstitial hydrostatic pressure, particularly in the context of hemorrhagic shock. The objective of this study was to investigate the mechanics of arterioles and functional capillary density (FCD) during application of negative tissue interstitial pressure after 40% total blood volume hemorrhagic shock. In this study, we characterized systemic and microcirculatory hemodynamic parameters, including FCD, in hamsters instrumented with a dorsal window chamber and a custom-designed negative pressure application device via intravital microscopy. In large arterioles, application of negative pressure after hemorrhagic shock resulted in a 13 ± 11% decrease in flow compared with only a 7 ± 9% decrease in flow after hemorrhagic shock alone after 90 minutes. In post-capillary venules, however, application of negative pressure after hemorrhagic shock resulted in a 31 ± 4% decrease in flow compared with only an 8 ± 5% decrease in flow after hemorrhagic shock alone after 90 minutes. Normalized FCD was observed to significantly improve after application of negative pressure after hemorrhagic shock (0.66 ± 0.02) compared to hemorrhagic shock without application of negative pressure (0.50 ± 0.04). Our study demonstrates that application of negative pressure acutely improves FCD during hemorrhagic shock, though it does not normalize FCD. These results suggest that by increasing the hydrostatic pressure gradient between the microvasculature and interstitium, microvascular perfusion can be transiently restored in the absence of volume resuscitation. This study has significant clinical implications, particularly in negative pressure wound therapy, and offers an alternative mechanism to improve microvascular perfusion during hypovolemic shock.
Assuntos
Capilares/fisiologia , Microcirculação/fisiologia , Microvasos/fisiopatologia , Choque Hemorrágico/fisiopatologia , Animais , Cricetinae , Masculino , Oxigênio/sangue , Ressuscitação/métodosRESUMO
Despite advancements in procedures and patient care, mortality rates for neonatal recipients of the Norwood procedure, a palliation for single ventricle congenital malformations, remain high due to the use of a fixed-diameter blood shunt. In this study, a new geometrically tunable blood shunt was investigated to address limitations of the current treatment paradigm (e.g., Modified Blalock-Taussig Shunt) by allowing for controlled modulation of blood flow through the shunt to accommodate physiological changes due to the patient's growth. First, mathematical and computational cardiovascular models were established to investigate the hemodynamic requirements of growing neonatal patients with shunts and to inform design criteria for shunt diameter changes. Then, two stages of prototyping were performed to design, build and test responsive hydrogel systems that facilitate tuning of the shunt diameter by adjusting the hydrogel's degree of crosslinking. We examined two mechanisms to drive crosslinking: infusion of chemical crosslinking agents and near-UV photoinitiation. The growth model showed that 15-18% increases in shunt diameter were required to accommodate growing patients' increasing blood flow; similarly, the computational models demonstrated that blood flow magnitudes were in agreement with previous reports. These target levels of diameter increases were achieved experimentally with model hydrogel systems. We also verified that the photocrosslinkable hydrogel, composed of methacrylated dextran, was contact-nonhemolytic. These results demonstrate proof-of-concept feasibility and reflect the first steps in the development of this novel blood shunt. A tunable shunt design offers a new methodology to rebalance blood flow in this vulnerable patient population during growth and development.
RESUMO
Microcirculatory preservation is essential for patient recovery from hemorrhagic shock. In hemorrhagic shock, microcirculatory flow and pressure are greatly reduced, creating an oxygen debt that may eventually become irreversible. During shock, tissues become hypoxic, cellular respiration turns to anaerobic metabolism, and the microcirculation rapidly begins to fail. This condition requires immediate fluid resuscitation to promote tissue reperfusion. The choice of fluid for resuscitation is whole blood; however, this may not be readily available and, on a larger scale, may be globally insufficient. Thus, extensive research on viable alternatives to blood has been undertaken in an effort to develop a clinically deployable blood substitute. This has not, as of yet, achieved fruition, in part due to an incomplete understanding of the complexities of the function of blood in the microcirculation. Hemodynamic resuscitation is acknowledged to be contingent on a number of factors other than volume expansion. The circulation of whole blood is carefully regulated to optimize oxygen delivery to the tissues via shear stress modulation through blood viscosity, inherent oxygen-carrying capacity, cell-free layer variation, and myogenic response, among other variables. Although plasma expanders can address a number of these issues, hemoglobin-based oxygen carriers (HBOCs) introduce a method of replenishing the intrinsic oxygen-carrying capacity of blood. There continue to be a number of issues related to HBOCs, but recent advances in the next-generation HBOCs show promise in the preservation of microcirculatory function and limiting toxicities. The development of HBOCs is now focused on viscosity and the degree of microvascular shear stress achieved in order to optimize vasoactive and oxygen delivery responses by leveraging the restoration and maintenance of physiological responses to blood flow in the microcirculation. Blood substitutes with higher viscous properties tend to improve oxygen delivery compared to those with lower viscosities. This review details current concepts in blood substitutes, particularly as they relate to trauma/hemorrhagic shock, with a specific focus on their complex interactions in the microcirculation.
RESUMO
Amelioration of immune overactivity during sepsis is key to restoring hemodynamics, microvascular blood flow, and tissue oxygenation, and in preventing multi-organ dysfunction syndrome. The systemic inflammatory response syndrome that results from sepsis ultimately leads to degradation of the endothelial glycocalyx and subsequently increased vascular leakage. Current fluid resuscitation techniques only transiently improve outcomes in sepsis, and can cause edema. Nitric oxide (NO) treatment for sepsis has shown promise in the past, but implementation is difficult due to the challenges associated with delivery and the transient nature of NO. To address this, we tested the anti-inflammatory efficacy of sustained delivery of exogenous NO using i.v. infused NO releasing nanoparticles (NO-np). The impact of NO-np on microhemodynamics and immune response in a lipopolysaccharide (LPS) induced endotoxemia mouse model was evaluated. NO-np treatment significantly attenuated the pro-inflammatory response by promoting M2 macrophage repolarization, which reduced the presence of pro-inflammatory cytokines in the serum and slowed vascular extravasation. Combined, this resulted in significantly improved microvascular blood flow and 72-h survival of animals treated with NO-np. The results from this study suggest that sustained supplementation of endogenous NO ameliorates and may prevent the morbidities of acute systemic inflammatory conditions. Given that endothelial dysfunction is a common denominator in many acute inflammatory conditions, it is likely that NO enhancement strategies may be useful for the treatment of sepsis and other acute inflammatory insults that trigger severe systemic pro-inflammatory responses and often result in a cytokine storm, as seen in COVID-19.