Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Muscle Nerve ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096012

RESUMO

INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.

2.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543540

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Assuntos
Multiômica , Atrofia Muscular Espinal , Humanos , Estudos Retrospectivos , Seguimentos , Proteoma , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo
3.
Cerebellum ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906407

RESUMO

Cerebellar syndromes are clinically and etiologically heterogeneous and can be classified as hereditary, neurodegenerative non-hereditary, or acquired. Few data are available on the frequency of each form in the clinical setting. Growing interest is emerging regarding the genetic forms caused by triplet repeat expansions. Alleles with repeat expansion lower than the pathological threshold, termed intermediate alleles (IAs), have been found to be associated with disease manifestation. In order to assess the relevance of IAs as a cause of cerebellar syndromes, we enrolled 66 unrelated Italian ataxic patients and described the distribution of the different etiology of their syndromes and the frequency of IAs. Each patient underwent complete clinical, hematological, and neurophysiological assessments, neuroimaging evaluations, and genetic tests for autosomal dominant cerebellar ataxia (SCA) and fragile X-associated tremor/ataxia syndrome (FXTAS). We identified the following diagnostic categories: 28% sporadic adult-onset ataxia, 18% cerebellar variant of multiple system atrophy, 9% acquired forms, 9% genetic forms with full-range expansion, and 12% cases with intermediate-range expansion. The IAs were six in the FMR1 gene, two in the gene responsible for SCA8, and one in the ATXN2 gene. The clinical phenotype of patients carrying the IAs resembles, in most of the cases, the one associated with full-range expansion. Our study provides an exhaustive description of the causes of cerebellar ataxia, estimating for the first time the frequency of IAs in SCAs- and FXTAS-associated genes. The high percentage of cases with IAs supports further screening among patients with cerebellar syndromes.

4.
BMC Neurol ; 23(1): 165, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095452

RESUMO

BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.


Assuntos
Acidose Láctica , Síndrome MELAS , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Neuropatia Óptica Isquêmica , Acidente Vascular Cerebral , Feminino , Humanos , Síndrome MELAS/genética , Neuropatia Óptica Isquêmica/complicações , Mutação , Acidente Vascular Cerebral/complicações , Doenças do Nervo Óptico/complicações , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Transtornos da Visão/complicações , Cefaleia/complicações
5.
J Neurol Neurosurg Psychiatry ; 93(12): 1253-1261, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220341

RESUMO

BACKGROUND: Natural history of spinal muscular atrophy (SMA) in adult age has not been fully elucidated yet, including factors predicting disease progression and response to treatments. Aim of this retrospective, cross-sectional study, is to investigate motor function across different ages, disease patterns and gender in adult SMA untreated patients. METHODS: Inclusion criteria were as follows: (1) clinical and molecular diagnosis of SMA2, SMA3 or SMA4 and (2) clinical assessments performed in adult age (>18 years). RESULTS: We included 64 (38.8%) females and 101 (61.2%) males (p=0.0025), among which 21 (12.7%) SMA2, 141 (85.5%) SMA3 and 3 (1.8%) SMA4. Ratio of sitters/walkers within the SMA3 subgroup was significantly (p=0.016) higher in males (46/38) than in females (19/38). Median age at onset was significantly (p=0.0071) earlier in females (3 years; range 0-16) than in males (4 years; range 0.3-28), especially in patients carrying 4 SMN2 copies. Median Hammersmith Functional Rating Scale Expanded scores were significantly (p=0.0040) lower in males (16, range 0-64) than in females (40, range 0-62); median revised upper limb module scores were not significantly (p=0.059) different between males (24, 0-38) and females (33, range 0-38), although a trend towards worse performance in males was observed. In SMA3 patients carrying three or four SMN2 copies, an effect of female sex in prolonging ambulation was statistically significant (p=0.034). CONCLUSIONS: Our data showed a relevant gender effect on SMA motor function with higher disease severity in males especially in the young adult age and in SMA3 patients.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Adulto Jovem , Masculino , Humanos , Feminino , Pré-Escolar , Adolescente , Atrofias Musculares Espinais da Infância/epidemiologia , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Estudos Transversais , Estudos Retrospectivos , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Progressão da Doença
6.
J Cell Mol Med ; 25(8): 3765-3771, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609080

RESUMO

Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated-neurofilament heavy chain (p-NfH) and neurofilament light chain (NfL) are neuron-specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p-NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p-NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut-off values of 0.652 ng/mL for CSF p-NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/metabolismo , Filamentos Intermediários/metabolismo , Doença dos Neurônios Motores/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Idoso , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Estudos de Casos e Controles , Estudos Transversais , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Doença dos Neurônios Motores/líquido cefalorraquidiano , Fosforilação , Prognóstico
7.
Cell Mol Life Sci ; 77(17): 3351-3367, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32123965

RESUMO

Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.


Assuntos
Proteínas de Ligação a DNA/genética , Atrofia Muscular Espinal/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Fatores de Transcrição/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Terapia Genética , Humanos , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Síndrome do Desconforto Respiratório do Recém-Nascido/complicações , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Ribossomos/química , Ribossomos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
J Cell Mol Med ; 24(2): 1169-1178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802621

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder caused by mutations in the IGHMBP2 gene, which encodes immunoglobulin µ-binding protein 2, leading to progressive spinal motor neuron degeneration. We review the data available in the literature about SMARD1. The vast majority of patients show an onset of typical symptoms in the first year of life. The main clinical features are distal muscular atrophy and diaphragmatic palsy, for which permanent supportive ventilation is required. No effective treatment is available yet, but novel therapeutic approaches, such as gene therapy, have shown encouraging results in preclinical settings and thus represent possible methods for treating SMARD1. Significant advancements in the understanding of both the SMARD1 clinical spectrum and its molecular mechanisms have allowed the rapid translation of preclinical therapeutic strategies to human patients to improve the poor prognosis of this devastating disease.


Assuntos
Proteínas de Ligação a DNA/genética , Terapia de Alvo Molecular , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Mutação , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Fatores de Transcrição/genética , Animais , Humanos , Atrofia Muscular Espinal/genética , Prognóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/genética
9.
J Cell Mol Med ; 24(5): 3034-3039, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032473

RESUMO

The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme-linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.


Assuntos
Proteínas de Neurofilamentos/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Adolescente , Adulto , Idade de Início , Idoso , Biomarcadores/líquido cefalorraquidiano , Pré-Escolar , Feminino , Humanos , Filamentos Intermediários/metabolismo , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos Antissenso/efeitos adversos , Atrofias Musculares Espinais da Infância/líquido cefalorraquidiano , Atrofias Musculares Espinais da Infância/patologia , Resultado do Tratamento
10.
J Neurol Neurosurg Psychiatry ; 91(11): 1166-1174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917822

RESUMO

OBJECTIVE: To retrospectively investigate safety and efficacy of nusinersen in a large cohort of adult Italian patients with spinal muscular atrophy (SMA). METHODS: Inclusion criteria were: (1) clinical and molecular diagnosis of SMA2 or SMA3; (2) nusinersen treatment started in adult age (>18 years); (3) clinical data available at least at baseline (T0-beginning of treatment) and 6 months (T6). RESULTS: We included 116 patients (13 SMA2 and 103 SMA3) with median age at first administration of 34 years (range 18-72). The Hammersmith Functional Rating Scale Expanded (HFMSE) in patients with SMA3 increased significantly from baseline to T6 (median change +1 point, p<0.0001), T10 (+2, p<0.0001) and T14 (+3, p<0.0001). HFMSE changes were independently significant in SMA3 sitter and walker subgroups. The Revised Upper Limb Module (RULM) in SMA3 significantly improved between T0 and T14 (median +0.5, p=0.012), with most of the benefit observed in sitters (+2, p=0.018). Conversely, patients with SMA2 had no significant changes of median HFMSE and RULM between T0 and the following time points, although a trend for improvement of RULM was observed in those with some residual baseline function. The rate of patients showing clinically meaningful improvements (as defined during clinical trials) increased from 53% to 69% from T6 to T14. CONCLUSIONS: Our data provide further evidence of nusinersen safety and efficacy in adult SMA2 and SMA3, with the latter appearing to be cumulative over time. In patients with extremely advanced disease, effects on residual motor function are less clear.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Adolescente , Adulto , Idade de Início , Idoso , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Estado Funcional , Humanos , Injeções Espinhais , Itália , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Postura Sentada , Atrofias Musculares Espinais da Infância/fisiopatologia , Resultado do Tratamento , Capacidade Vital , Teste de Caminhada , Caminhada , Adulto Jovem
12.
Muscle Nerve ; 55(1): 55-68, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27184587

RESUMO

INTRODUCTION: Limb girdle muscular dystrophies (LGMDs) are characterized by high molecular heterogeneity, clinical overlap, and a paucity of specific biomarkers. Their molecular definition is fundamental for prognostic and therapeutic purposes. METHODS: We created an Italian LGMD registry that included 370 molecularly defined patients. We reviewed detailed retrospective and prospective data and compared each LGMD subtype for differential diagnosis purposes. RESULTS: LGMD types 2A and 2B are the most frequent forms in Italy. The ages at disease onset, clinical progression, and cardiac and respiratory involvement can vary greatly between each LGMD subtype. In a set of extensively studied patients, targeted next-generation sequencing (NGS) identified mutations in 36.5% of cases. CONCLUSION: Detailed clinical characterization combined with muscle tissue analysis is fundamental to guide differential diagnosis and to address molecular tests. NGS is useful for diagnosing forms without specific biomarkers, although, at least in our study cohort, several LGMD disease mechanisms remain to be identified. Muscle Nerve 55: 55-68, 2017.


Assuntos
Diagnóstico Diferencial , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Adolescente , Adulto , Idade de Início , Idoso , Creatina Quinase/sangue , Feminino , Estudos de Associação Genética , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/genética , Sistema de Registros , Transtornos Respiratórios/etiologia , Estatísticas não Paramétricas , Adulto Jovem
13.
Mol Ther ; 23(3): 477-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25358252

RESUMO

Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Atrofia Muscular Espinal/terapia , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Animais Recém-Nascidos , Tronco Encefálico/metabolismo , Córtex Cerebral/metabolismo , DNA Complementar/administração & dosagem , DNA Complementar/genética , DNA Complementar/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Expressão Gênica , Vetores Genéticos/farmacocinética , Injeções Epidurais , Macaca fascicularis , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transdução Genética , Transgenes
14.
Mol Ther ; 23(1): 192-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25322757

RESUMO

Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 10(11) vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 10(11) vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases.


Assuntos
Distrofina/deficiência , Proteínas Relacionadas à Folistatina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Miostatina/genética , Adulto , Dependovirus/genética , Distrofina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Expressão Gênica , Vetores Genéticos , Humanos , Injeções Intramusculares , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miostatina/antagonistas & inibidores , Miostatina/metabolismo
15.
Cell Mol Life Sci ; 70(23): 4585-602, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23775131

RESUMO

Muscular dystrophy is a heterogeneous group of genetic disorders characterised by progressive muscle tissue degeneration. No effective treatment has been discovered for these diseases. Preclinical and clinical studies aimed at the development of new therapeutic approaches have been carried out, primarily in subjects affected with dystrophinopathies (Duchenne and Becker muscular dystrophy). In this review, we outline the current therapeutic approaches and past and ongoing clinical trials, highlighting both the advantages and limits of each one. The experimental designs of these trials were based on different rationales, including immunomodulation, readthrough strategies, exon skipping, gene therapy, and cell therapy. We also provide an overview of available outcome measures, focusing on their reliability in estimating meaningful clinical improvement in order to aid in the design of future trials. This perspective is extremely relevant to the field considering the recent development of novel therapeutic approaches that will result in an increasing number of clinical studies over the next few years.


Assuntos
Ensaios Clínicos como Assunto/métodos , Distrofia Muscular de Duchenne/terapia , Avaliação de Resultados em Cuidados de Saúde/métodos , Animais , Biomarcadores/sangue , Tratamento Farmacológico/métodos , Humanos , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/fisiopatologia , Reprodutibilidade dos Testes , Transplante de Células-Tronco/métodos , Caminhada/fisiologia
16.
J Neuromuscul Dis ; 11(2): 375-387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189759

RESUMO

Background: Becker muscular dystrophy (BMD) is a dystrophinopathy due to in-frame mutations in the dystrophin gene (DMD) which determines a reduction of dystrophin at muscle level. BMD has a wide spectrum of clinical variability with different degrees of disability. Studies of natural history are needed also in view of up-coming clinical trials. Objectives: From an initial cohort of 32 BMD adult subjects, we present a detailed phenotypic characterization of 28 patients, then providing a description of their clinical natural history over the course of 12 months for 18 and 24 months for 13 of them. Methods: Each patient has been genetically characterized. Baseline, and 1-year and 2 years assessments included North Star Ambulatory Assessment (NSAA), timed function tests (time to climb and descend four stairs), 6-minute walk test (6MWT), Walton and Gardner-Medwin Scale and Medical Research Council (MRC) scale. Muscle magnetic resonance imaging (MRI) was acquired at baseline and in a subgroup of 9 patients after 24 months. Data on cardiac function (electrocardiogram, echocardiogram, and cardiac MRI) were also collected. Results and conclusions: Among the clinical heterogeneity, a more severe involvement is often observed in patients with 45-X del, with a disease progression over two years. The 6MWT appears sensitive to detect modification from baseline during follow up while no variation was observed by MRC testing. Muscle MRI of the lower limbs correlates with clinical parameters.Our study further highlights how the phenotypic variability of BMD adult patients makes it difficult to describe an uniform course and substantiates the need to identify predictive parameters and biomarkers to stratify patients.


Assuntos
Distrofia Muscular de Duchenne , Adulto , Humanos , Distrofina/genética , Seguimentos , Músculo Esquelético/patologia , Variação Biológica da População
17.
J Neurol ; 271(8): 5478-5488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886208

RESUMO

BACKGROUND: Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE: Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS: We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS: In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION: Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.


Assuntos
Progressão da Doença , Humanos , Pessoa de Meia-Idade , Itália/epidemiologia , Masculino , Feminino , Idoso , Estudos de Coortes , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/epidemiologia , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/epidemiologia , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/fisiopatologia , Idade de Início , Fatores de Crescimento de Fibroblastos , Degenerações Espinocerebelares
18.
Acta Myol ; 42(2-3): 65-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090548

RESUMO

Objective: Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disease affecting the lower motor neuron, carrying a significant burden on patients' general motor skills and quality of life, characterized by a great variability in phenotypic expression. As new therapeutic options make their appearance on the scene, sensitive clinical tools and outcome measures are needed, especially in adult patients undergoing treatment, in which the expected clinical response is a mild improvement or stabilization of disease progression. Methods: Here, we describe a new functional motor scale specifically designed for evaluating the endurance dimension for the upper and lower limbs in adult SMA patients. Results: The scale was first tested in eight control healthy subjects and then validated in ten adult SMA patients, proving intra- and inter-observer reliability. We also set up an evaluation protocol by using wearable devices including surface EMG and accelerometer. Conclusions: The endurance evaluation should integrate the standard clinical monitoring in the management and follow-up of SMA adult patients.


Assuntos
Atrofia Muscular Espinal , Qualidade de Vida , Adulto , Humanos , Reprodutibilidade dos Testes , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Fadiga , Protocolos Clínicos
19.
Neuromuscul Disord ; 33(12): 911-916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945485

RESUMO

Due to poor data in literature, we aimed to investigate the respiratory function in a large cohort of naïve Italian adult (≥18 years) SMA patients in a multi-centric cross-sectional study. The following respiratory parameters were considered: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and need for non-invasive ventilation (NIV). We included 145 treatment-naïve adult patients (SMA2=18, SMA3=125; SMA4=2), 58 females (40 %), with median age at evaluation of 37 years (range 18-72). Fifty-six (37 %) and 41 (31 %) patients had abnormal (<80 %) values of FVC and FEV1, respectively. Fourteen (14 %) patients needed NIV, started at median age of 21 (range 4-68). Motor function, measured by Hammersmith Functional Motor Scale Expanded and Revised Upper Limb Module as well as SMA2, loss of walking ability, surgery for scoliosis, use of NIV, and cough assisting device (CAD) were all significantly associated to lower FVC and FEV1 values, while no association with age at baseline, disease duration, gender or 6 min walking test was observed, except for a correlation between FVC and age in SMA3 walkers (p < 0.05). In conclusion, respiratory function in adult SMA patients is relatively frequently impaired, substantially stable, and significantly correlated with motor function and disease severity.


Assuntos
Atrofia Muscular Espinal , Respiração , Adulto , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Capacidade Vital , Volume Expiratório Forçado
20.
Hum Mol Genet ; 19(19): 3782-96, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20650960

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease characterized by the loss of motor neurons. Motor neuron degeneration is probably both a cell autonomous and a non-autonomous event. Therefore, manipulating the diseased microenvironment via non-neural cell replacement could be a therapeutic strategy. We investigated a cell therapy approach using intravascular injection to transplant a specific population of c-kit(+) stem/progenitor cells from bone marrow into the SOD1G93A mouse model of ALS. Transplanted cells engrafted within the host spinal cord. Cell transplantation significantly prolonged disease duration and lifespan in superoxide dismutase 1 mice, promoted the survival of motor neurons and improved neuromuscular function. Neuroprotection was mediated by multiple effects, in particular by the expression of primary astrocyte glutamate transporter GLT1 and by the non-mutant genome. These findings suggest that this type of somatic cell transplantation strategy merits further investigation as a possible effective therapy for ALS and other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transplante de Células-Tronco , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Animais , Bioensaio , Vasos Sanguíneos/patologia , Células da Medula Óssea/citologia , Morte Celular , Separação Celular , Sobrevivência Celular , Técnicas de Cocultura , Espaço Extracelular/metabolismo , Glutamatos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Neurônios Motores/patologia , Proteínas Mutantes/metabolismo , Fenótipo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA