Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
BMC Biol ; 22(1): 178, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183269

RESUMO

BACKGROUND: The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis. RESULTS: Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota. Absolute quantitation by multiple reaction monitoring has confirmed the presence of bacterial peptides in the blood plasma and serum in the range of approximately 0.1 nM to 1 µM. The abundance of microbiota peptides reaches its maximum about 5 h after a meal. Most of the peptides correlate with the bacterial composition of the small intestine and are likely obtained by hydrolysis of membrane proteins with trypsin, chymotrypsin and pepsin - the main proteases of the gastrointestinal tract. The peptides have physicochemical properties that likely allow them to selectively pass the intestinal mucosal barrier and resist fibrinolysis. CONCLUSIONS: The proposed approach to the identification of microbiota peptides in the blood, after additional validation, may be useful for determining the microbiota composition of hard-to-reach intestinal areas and monitoring the permeability of the intestinal mucosal barrier.


Assuntos
Microbioma Gastrointestinal , Peptídeos , Humanos , Microbioma Gastrointestinal/fisiologia , Peptídeos/análise , Masculino , Adulto
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982752

RESUMO

MOTIVATION: The Oxford Nanopore technology has a great potential for the analysis of methylated motifs in genomes, including whole-genome methylome profiling. However, we found that there are no methylation motifs detection algorithms, which would be sensitive enough and return deterministic results. Thus, the MEME suit does not extract all Helicobacter pylori methylation sites de novo even using the iterative approach implemented in the most up-to-date methylation analysis tool Nanodisco. RESULTS: We present Snapper, a new highly sensitive approach, to extract methylation motif sequences based on a greedy motif selection algorithm. Snapper does not require manual control during the enrichment process and has enrichment sensitivity higher than MEME coupled with Tombo or Nanodisco instruments that was demonstrated on H.pylori strain J99 studied earlier by the PacBio technology and on four external datasets representing different bacterial species. We used Snapper to characterize the total methylome of a new H.pylori strain A45. At least four methylation sites that have not been described for H.pylori earlier were revealed. We experimentally confirmed the presence of a new CCAG-specific methyltransferase and inferred a gene encoding a new CCAAK-specific methyltransferase. AVAILABILITY AND IMPLEMENTATION: Snapper is implemented using Python and is freely available as a pip package named "snapper-ont." Also, Snapper and the demo dataset are available in Zenodo (10.5281/zenodo.10117651).


Assuntos
Genoma Bacteriano , Nanoporos , Metilação de DNA , Metiltransferases/genética , Metiltransferases/metabolismo , Algoritmos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047346

RESUMO

Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of 'key-driver' in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Senescência Celular , Medicina Regenerativa , Inflamação/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
4.
Genome Res ; 29(9): 1464-1477, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31387879

RESUMO

Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant Physcomitrella patens (moss). Several distinct classes of sORFs that differ in terms of their position on transcripts and the level of evolutionary conservation are present in the moss genome. Over 5000 sORFs were conserved in at least one of 10 plant species examined. Mass spectrometry analysis of proteomic and peptidomic data sets suggested that tens of sORFs located on distinct parts of mRNAs and long noncoding RNAs (lncRNAs) are translated, including conserved sORFs. Translational analysis of the sORFs and main ORFs at a single locus suggested the existence of genes that code for multiple proteins and peptides with tissue-specific expression. Functional analysis of four lncRNA-encoded peptides showed that sORFs-encoded peptides are involved in regulation of growth and differentiation in moss. Knocking out lncRNA-encoded peptides resulted in a decrease of moss growth. In contrast, the overexpression of these peptides resulted in a diverse range of phenotypic effects. Our results thus open new avenues for discovering novel, biologically active peptides in the plant kingdom.


Assuntos
Bryopsida/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas , Proteômica/métodos , Bryopsida/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Espectrometria de Massas , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , RNA Longo não Codificante , Análise de Sequência de DNA
5.
Bioinformatics ; 36(12): 3882-3884, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311023

RESUMO

SUMMARY: Phigaro is a standalone command-line application that is able to detect prophage regions taking raw genome and metagenome assemblies as an input. It also produces dynamic annotated 'prophage genome maps' and marks possible transposon insertion spots inside prophages. It is applicable for mining prophage regions from large metagenomic datasets. AVAILABILITY AND IMPLEMENTATION: Source code for Phigaro is freely available for download at https://github.com/bobeobibo/phigaro along with test data. The code is written in Python. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Prófagos , Metagenoma , Metagenômica , Prófagos/genética , Software
7.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349672

RESUMO

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Assuntos
Genoma , Hirudo medicinalis/genética , Proteínas e Peptídeos Salivares/genética , Animais , Anticoagulantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hirudo medicinalis/metabolismo , Sanguessugas/classificação , Sanguessugas/genética , Sanguessugas/metabolismo , Proteômica , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
8.
Nucleic Acids Res ; 46(17): 8966-8977, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30102362

RESUMO

Several studies have described functional peptides encoded in RNA that are considered to be noncoding. Telomerase RNA together with telomerase reverse transcriptase and regulatory proteins make up the telomerase complex, the major component of the telomere length-maintaining machinery. In contrast to protein subunits, telomerase RNA is expressed constitutively in most somatic cells where telomerase reverse transcriptase is absent. We show here that the transcript of human telomerase RNA codes a 121 amino acid protein (hTERP). The existence of hTERP was shown by immunoblotting, immunofluorescence microscopy and mass spectroscopy. Gain-of-function and loss-of-function experiments showed that hTERP protects cells from drug-induced apoptosis and participates in the processing of autophagosome. We suggest that hTERP regulates crosstalk between autophagy and apoptosis and is involved in cellular adaptation under stress conditions.


Assuntos
Adaptação Fisiológica/genética , Apoptose/genética , Autofagia/genética , RNA Mensageiro/genética , RNA/genética , Telomerase/genética , Telômero/metabolismo , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Gatos , Linhagem Celular Tumoral , Clonagem Molecular , Doxorrubicina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Cavalos , Humanos , Células Jurkat , Camundongos , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Estresse Fisiológico , Telomerase/metabolismo , Telômero/química , Homeostase do Telômero
9.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114182

RESUMO

The malignant tumor is a complex heterogeneous set of cells functioning in a no less heterogeneous microenvironment. Like any dynamic system, cancerous tumors evolve and undergo changes in response to external influences, including therapy. Initially, most tumors are susceptible to treatment. However, remaining cancer cells may rapidly reestablish the tumor after a temporary remission. These new populations of malignant cells usually have increased resistance not only to the first-line agent, but also to the second- and third-line drugs, leading to a significant decrease in patient survival. Multiple studies describe the mechanism of acquired therapy resistance. In past decades, it became clear that, in addition to the simple selection of pre-existing resistant clones, therapy induces a highly complicated and tightly regulated molecular response that allows tumors to adapt to current and even subsequent therapeutic interventions. This review summarizes mechanisms of acquired resistance, such as secondary genetic alterations, impaired function of drug transporters, and autophagy. Moreover, we describe less obvious molecular aspects of therapy resistance in cancers, including epithelial-to-mesenchymal transition, cell cycle alterations, and the role of intercellular communication. Understanding these molecular mechanisms will be beneficial in finding novel therapeutic approaches for cancer therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Redes Reguladoras de Genes , Neoplasias/genética , Autofagia , Ciclo Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos
10.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228004

RESUMO

Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples-plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors-appeared in the scientific journals in the last decade. Significant immunopeptidome identification efficiency was achieved by advances in technology: the immunoprecipitation of MHC and mass spectrometry-based approaches. Researchers optimized common strategies to isolate MHC-associated peptides for individual tasks. They published many protocols with differences in the amount and type of biological sample, amount of antibodies, type and amount of insoluble support, methods of post-fractionation and purification, and approaches to LC-MS/MS identification of immunopeptidome. These parameters have a large impact on the final repertoire of isolated immunopeptidome. In this review, we summarize and compare immunopeptidome isolation techniques with an emphasis on the results obtained.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/isolamento & purificação , Proteoma/metabolismo , Proteômica , Animais , Anticorpos/metabolismo , Cromatografia de Afinidade , Antígenos de Histocompatibilidade Classe I/genética , Humanos
11.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599598

RESUMO

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Assuntos
Proteínas/análise , Proteoma , Proteômica/métodos , Técnicas Biossensoriais , Eletroforese em Gel Bidimensional , Genoma Humano , Humanos , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Federação Russa , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fluxo de Trabalho
12.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616513

RESUMO

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Assuntos
Acetatos/farmacologia , Anti-Infecciosos/metabolismo , Bryopsida/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Anti-Infecciosos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação
13.
BMC Microbiol ; 19(1): 312, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888470

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) has been recently approved by FDA for the treatment of refractory recurrent clostridial colitis (rCDI). Success of FTM in treatment of rCDI led to a number of studies investigating the effectiveness of its application in the other gastrointestinal diseases. However, in the majority of studies the effects of FMT were evaluated on the patients with initially altered microbiota. The aim of our study was to estimate effects of FMT on the gut microbiota composition in healthy volunteers and to monitor its long-term outcomes. RESULTS: We have performed a combined analysis of three healthy volunteers before and after capsule FMT by evaluating their general condition, adverse clinical effects, changes of basic laboratory parameters, and several immune markers. Intestinal microbiota samples were evaluated by 16S rRNA gene and shotgun sequencing. The data analysis demonstrated profound shift towards the donor microbiota taxonomic composition in all volunteers. Following FMT, all the volunteers exhibited gut colonization with donor gut bacteria and persistence of this effect for almost ∼1 year of observation. Transient changes of immune parameters were consistent with suppression of T-cell cytotoxicity. FMT was well tolerated with mild gastrointestinal adverse events, however, one volunteer developed a systemic inflammatory response syndrome. CONCLUSIONS: The FMT leads to significant long-term changes of the gut microbiota in healthy volunteers with the shift towards donor microbiota composition and represents a relatively safe procedure to the recipients without long-term adverse events.


Assuntos
Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores de Tempo
14.
Mol Phylogenet Evol ; 139: 106559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302224

RESUMO

The insertion sequence 6110 (IS6110) is the most studied transposable element in the Mycobacterium tuberculosis complex species. The element plays a significant role in genome plasticity of this important human pathogen, but still many causes and consequences of its transposition have not been fully studied. Here, we analyzed insertion sites for 902 Mycobacterium tuberculosis lineage 2 strains using whole-genome sequencing data. In total, 17,972 insertions were found, corresponding to 827 independent positions in the genome of the reference strain H37Rv. To trace the history of IS6110 expansion since proto-Beijing strains up to modern sublineages, we looked at the distribution of IS6110 across the genome-wide SNP-based phylogenetic tree. This analysis demonstrated a stepwise transposition of IS6110 that occurs by «copy-and-paste¼ mechanism. Additionally, we detected evolutionary-scale and sublineage-specific integration sites, which can be used for typing and for understanding the reasons for the success of the lineage. A significant part of such insertions affected the genes that are essential for the pathogen. Finally, we identified and confirmed deletions that occurred between differently oriented elements, which is uncommon for this family of insertion elements and appears to be another mechanism of genome variability.


Assuntos
Elementos de DNA Transponíveis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Filogenia , Sequência de Bases , DNA Intergênico/genética , Genoma Bacteriano , Humanos , Recombinação Genética/genética , Deleção de Sequência/genética , Sequenciamento Completo do Genoma
15.
Nucleic Acids Res ; 45(6): 3487-3502, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27899632

RESUMO

Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs.


Assuntos
Regiões 5' não Traduzidas , Escherichia coli/genética , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Ribonucleico , Separação Celular , Citometria de Fluxo , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/fisiologia
16.
J Strength Cond Res ; 33(3): 691-700, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30694969

RESUMO

Guilherme, JPLF, Egorova, ES, Semenova, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Ospanova, EA, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Govorun, VM, Generozov, EV, Ahmetov, II, and Lancha Junior, AH. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J Strength Cond Res 33(3): 691-700, 2019-The purpose of this study was to explore the frequency of the FTO T > A (rs9939609) polymorphism in elite athletes from 2 cohorts (Brazil and Russia), as well as to find a relationship between FTO genotypes and muscle fiber composition. A total of 677 athletes and 652 nonathletes were evaluated in the Brazilian cohort, whereas a total of 920 athletes and 754 nonathletes were evaluated in the Russian cohort. It was found a trend for a lower frequency of A/A genotype in long-distance athletes compared with nonathletes (odds ratio [OR]: 0.65; p = 0.054). By contrast, it was found an increased frequency of the A-allele in Russian power athletes. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a Russian power athlete compared with matched nonathletes (OR: 1.45; p = 0.002). Different from that observed in combat sports athletes of lighter weight categories, the A-allele was also over-represented in combat sports athletes of heavier weight categories. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a combat sports athlete of heavier weight categories compared with nonathletes (OR: 1.79; p = 0.018). Regarding the muscle fibers, we found that carriers of the A/A genotype had less slow-twitch muscle fibers than T-allele carriers (p = 0.029). In conclusion, the A/A genotype of the FTO T > A polymorphism is under-represented in athletes more reliant on a lean phenotype and associated with decreased proportion of slow-twitch muscle fibers, while is over-represented in strength and heavier athletes.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Atletas , Peso Corporal/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Força Muscular/fisiologia , Esportes/fisiologia , Adulto , Alelos , Brasil , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Estresse Oxidativo , Fenótipo , Polimorfismo de Nucleotídeo Único , Federação Russa , Adulto Jovem
17.
BMC Genomics ; 19(1): 968, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587114

RESUMO

BACKGROUND: Crohn's disease is associated with gut dysbiosis. Independent studies have shown an increase in the abundance of certain bacterial species, particularly Escherichia coli with the adherent-invasive pathotype, in the gut. The role of these species in this disease needs to be elucidated. METHODS: We performed a metagenomic study investigating the gut microbiota of patients with Crohn's disease. A metagenomic reconstruction of the consensus genome content of the species was used to assess the genetic variability. RESULTS: The abnormal shifts in the microbial community structures in Crohn's disease were heterogeneous among the patients. The metagenomic data suggested the existence of multiple E. coli strains within individual patients. We discovered that the genetic diversity of the species was high and that only a few samples manifested similarity to the adherent-invasive varieties. The other species demonstrated genetic diversity comparable to that observed in the healthy subjects. Our results were supported by a comparison of the sequenced genomes of isolates from the same microbiota samples and a meta-analysis of published gut metagenomes. CONCLUSIONS: The genomic diversity of Crohn's disease-associated E. coli within and among the patients paves the way towards an understanding of the microbial mechanisms underlying the onset and progression of the Crohn's disease and the development of new strategies for the prevention and treatment of this disease.


Assuntos
Doença de Crohn/patologia , Escherichia coli/genética , Microbioma Gastrointestinal , Variação Genética , Metagenômica/métodos , Análise por Conglomerados , Doença de Crohn/microbiologia , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Genoma Bacteriano , Humanos , Mucosa Intestinal/microbiologia
18.
Environ Microbiol ; 20(6): 2288-2300, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30014616

RESUMO

Antibiotic resistance is increasing among pathogens, and the human microbiome contains a reservoir of antibiotic resistance genes. Acidaminococcus intestini is the first Negativicute bacterium (Gram-negative Firmicute) shown to be resistant to beta-lactam antibiotics. Resistance is conferred by the aci1 gene, but its evolutionary history and prevalence remain obscure. We discovered that ACI-1 proteins are phylogenetically distinct from beta-lactamases of Gram-positive Firmicutes and that aci1 occurs in bacteria scattered across the Negativicute clade, suggesting lateral gene transfer. In the reference A. intestini RyC-MR95 genome, we found transposons residing within a tailed prophage context are likely vehicles for aci1's mobility. We found aci1 in 56 (4.4%) of 1,267 human gut metagenomes, mostly hosted within A. intestini, and, where could be determined, mostly within a consistent mobile element constellation. These samples are from Europe, China and the USA, showing that aci1 is distributed globally. We found that for most Negativicute assemblies with aci1, the prophage observed in A. instestini is absent, but in all cases aci1 is flanked by varying transposons. The chimeric mobile elements we identify here likely have a complex evolutionary history and potentially provide multiple complementary mechanisms for antibiotic resistance gene transfer both within and between cells.


Assuntos
Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Prófagos/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , China , Europa (Continente) , Firmicutes/genética , Transferência Genética Horizontal , Humanos , Metagenoma , Filogenia , Estados Unidos , beta-Lactamases/genética
19.
Mol Cell Proteomics ; 15(7): 2366-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143409

RESUMO

Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.


Assuntos
Autoanticorpos/líquido cefalorraquidiano , Citocinas/sangue , Síndrome de Guillain-Barré/imunologia , Esclerose Múltipla/imunologia , Proteômica/métodos , Adesão Celular , Cromatografia Líquida , Feminino , Humanos , Imunidade Inata , Masculino , Espectrometria de Massas em Tandem , Regulação para Cima
20.
Biol Sport ; 35(2): 105-109, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30455538

RESUMO

We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/power track and field athlete status in men, but not in women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA