Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
PLoS Biol ; 21(5): e3002082, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126512

RESUMO

The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless "Genotype-by-Laboratory" (GxL) factor-the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.


Assuntos
Laboratórios , Projetos de Pesquisa , Animais , Ratos , Estudos Prospectivos , Genótipo , Bases de Dados Factuais
2.
Mol Psychiatry ; 28(5): 1946-1959, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36631597

RESUMO

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

3.
Am J Med Genet A ; 194(5): e63539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38204290

RESUMO

The neurodevelopmental disorder known as Helsmoortel-van der Aa syndrome (HVDAS, MIM#616580) or ADNP syndrome (Orphanet, ORPHA:404448) is a multiple congenital anomaly (MCA) condition, reported as a syndrome in 2014, associated with deleterious variants in the ADNP gene (activity-dependent neuroprotective protein; MIM*611386) in several children. First reported in the turn of the century, ADNP is a protein with crucial functions for the normal development of the central nervous system and with pleiotropic effects, explaining the multisystemic character of the syndrome. Affected individuals present with striking facial dysmorphic features and variable congenital defects. Herein, we describe a novel case series of HVDAS Italian patients, illustrating their clinical findings and the related genotype-phenotype correlations. Interestingly, the cutaneous manifestations are also extensively expanded, giving an important contribution to the clinical characterization of the condition, and highlighting the relation between skin abnormalities and ADNP defects.


Assuntos
Anormalidades Múltiplas , Transtorno Autístico , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Criança , Humanos , Mutação , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Transtorno Autístico/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Homeodomínio/genética , Síndrome
4.
Eur J Neurosci ; 58(2): 2641-2652, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36669790

RESUMO

NAP (NAPVSIPQ, drug candidate name, davunetide) is the neuroprotective fragment of activity-dependent neuroprotective protein (ADNP). Recent studies identified NAPVSIP as a Src homology 3 (SH3) domain-ligand association site, responsible for controlling signalling pathways regulating the cytoskeleton. Furthermore, the SIP motif in NAP/ADNP was identified as crucial for direct microtubule end-binding protein interaction facilitating microtubule dynamics and Tau microtubule interaction, at the microtubule end-binding protein site EB1 and EB3. Most de novo ADNP mutations reveal heterozygous STOP or frameshift STOP aberrations, driving the autistic/intellectual disability-related ADNP syndrome. Here, we report for the first time on a de novo missense mutation, resulting in ADNP containing NAPVISPQE instead of NAPVSIPQQ, in a child presenting developmental hypotonia, possibly associated with inflammation affecting food intake in early life coupled with fear of peer interactions and suggestive of a novel case of the ADNP syndrome. In silico modelling showed that the mutation Q (polar side chain) to E (negative side chain) affected the electrostatic characteristics of ADNP (reducing, while scattering the electrostatic positive patch). Comparison with the most prevalent pathogenic ADNP mutation, p.Tyr719*, indicated a further reduction in the electrostatic patch. Previously, exogenous NAP partially ameliorated deficits associated with ADNP p.Tyr719* mutations in transfected cells and in CRISPR/Cas9 genome edited cell and mouse models. These findings stress the importance of the NAP sequence in ADNP and as a future putative therapy for the ADNP syndrome.


Assuntos
Proteínas do Tecido Nervoso , Mutação Puntual , Camundongos , Animais , Proteínas do Tecido Nervoso/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Microtúbulos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
5.
Mol Psychiatry ; 27(8): 3316-3327, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538192

RESUMO

De novo heterozygous mutations in activity-dependent neuroprotective protein (ADNP) cause autistic ADNP syndrome. ADNP mutations impair microtubule (MT) function, essential for synaptic activity. The ADNP MT-associating fragment NAPVSIPQ (called NAP) contains an MT end-binding protein interacting domain, SxIP (mimicking the active-peptide, SKIP). We hypothesized that not all ADNP mutations are similarly deleterious and that the NAPV portion of NAPVSIPQ is biologically active. Using the eukaryotic linear motif (ELM) resource, we identified a Src homology 3 (SH3) domain-ligand association site in NAP responsible for controlling signaling pathways regulating the cytoskeleton, namely NAPVSIP. Altogether, we mapped multiple SH3-binding sites in ADNP. Comparisons of the effects of ADNP mutations p.Glu830synfs*83, p.Lys408Valfs*31, p.Ser404* on MT dynamics and Tau interactions (live-cell fluorescence-microscopy) suggested spared toxic function in p.Lys408Valfs*31, with a regained SH3-binding motif due to the frameshift insertion. Site-directed-mutagenesis, abolishing the p.Lys408Valfs*31 SH3-binding motif, produced MT toxicity. NAP normalized MT activities in the face of all ADNP mutations, although, SKIP, missing the SH3-binding motif, showed reduced efficacy in terms of MT-Tau interactions, as compared with NAP. Lastly, SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), a major autism gene product, interact with the cytoskeleton through an actin-binding motif to modify behavior. Similarly, ELM analysis identified an actin-binding site on ADNP, suggesting direct SH3 and indirect SHANK3/ADNP associations. Actin co-immunoprecipitations from mouse brain extracts showed NAP-mediated normalization of Shank3-Adnp-actin interactions. Furthermore, NAP treatment ameliorated aberrant behavior in mice homozygous for the Shank3 ASD-linked InsG3680 mutation, revealing a fundamental shared mechanism between ADNP and SHANK3.


Assuntos
Transtorno Autístico , Proteínas de Homeodomínio , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Animais , Camundongos , Actinas , Transtorno Autístico/metabolismo , Proteínas de Homeodomínio/genética , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
6.
Mol Psychiatry ; 27(11): 4590-4598, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35864319

RESUMO

Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.


Assuntos
Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Transtornos de Estresse Pós-Traumáticos/psicologia , Veteranos/psicologia , Ansiedade , Comorbidade
7.
Mol Psychiatry ; 26(5): 1619-1633, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31664177

RESUMO

With Alzheimer's disease (AD) exhibiting reduced ability of neural stem cell renewal, we hypothesized that de novo mutations controlling embryonic development, in the form of brain somatic mutations instigate the disease. A leading gene presenting heterozygous dominant de novo autism-intellectual disabilities (ID) causing mutations is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy. We discovered a genomic autism ADNP mutation (c.2188C>T) in postmortem AD olfactory bulbs and hippocampi. RNA-Seq of olfactory bulbs also identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations) and 104 genes presenting disease-causing mutations (OMIM) were discovered. OMIM AD mutated genes converged on cytoskeletal mechanisms, autism and ID causing mutations (about 40% each). The number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls. RNA-seq datamining (hippocampus, dorsolateral prefrontal cortex, fusiform gyrus and superior frontal gyrus-583 subjects) yielded similar results. Overlapping all tested brain areas identified unique and shared mutations, with ADNP singled out as a gene associated with autism/ID/AD and presenting several unique aging/AD mutations. The large fusiform gyrus library (117 subjects) with high sequencing coverage correlated the c.2187_2188insA ADNP mutation frequency to Braak stage (tauopathy) and showed more ADNP mutations in AD specimens. In cell cultures, the ADNP-derived snippet NAP inhibited mutated-ADNP-microtubule (MT) toxicity and enhanced Tau-MT association. We propose a paradigm-shifting concept in the perception of AD whereby accumulating mosaic somatic mutations promote brain pathology.


Assuntos
Doença de Alzheimer , Transtorno Autístico , Proteínas de Homeodomínio/genética , Deficiência Intelectual , Proteínas do Tecido Nervoso/genética , Doença de Alzheimer/genética , Transtorno Autístico/genética , Encéfalo/metabolismo , Humanos , Mutação
8.
Mol Psychiatry ; 26(11): 6550-6561, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33967268

RESUMO

Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and function. As such, de novo mutations in ADNP lead to the autistic ADNP syndrome and somatic ADNP mutations may drive Alzheimer's disease (AD) tauopathy. Sirtuin 1 (SIRT1) is positively associated with aging, the major risk for AD. Here, we revealed two key interaction sites for ADNP and SIRT1. One, at the microtubule end-binding protein (EB1 and EB3) Tau level, with EB1/EB3 serving as amplifiers for microtubule dynamics, synapse formation, axonal transport, and protection against tauopathy. Two, on the DNA/chromatin site, with yin yang 1, histone deacetylase 2, and ADNP, sharing a DNA binding motif and regulating SIRT1, ADNP, and EB1 (MAPRE1). This interaction was linked to sex- and age-dependent altered histone modification, associated with ADNP/SIRT1/WD repeat-containing protein 5, which mediates the assembly of histone modification complexes. Single-cell RNA and protein expression analyses as well as gene expression correlations placed SIRT1-ADNP and either MAPRE1 (EB1), MAPRE3 (EB3), or both in the same mouse and human cell; however, while MAPRE1 seemed to be similarly regulated to ADNP and SIRT1, MAPRE3 seemed to deviate. Finally, we demonstrated an extremely tight correlation for the gene transcripts described above, including related gene products. This correlation was specifically abolished in affected postmortem AD and Parkinson's disease brain select areas compared to matched controls, while being maintained in blood samples. Thus, we identified an ADNP-SIRT1 complex that may serve as a new target for the understanding of brain degeneration.


Assuntos
Histonas , Sirtuína 1 , Animais , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Camundongos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
Drug Dev Res ; 83(6): 1419-1424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35774024

RESUMO

With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.


Assuntos
Envelhecimento , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Centenários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Linhagem Celular , Feminino , Humanos , RNA Mensageiro/genética
10.
J Neural Transm (Vienna) ; 127(2): 251-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32072336

RESUMO

Activity-dependent neuroprotective protein (ADNP) and its protein snippet NAP (drug candidate CP201) regulate synapse formation and cognitive as well as behavioral functions, in part, through microtubule interaction. Given potential interactions between the microbiome and brain function, we now investigated the potential effects of the ADNP-deficient genotype, mimicking the ADNP syndrome on microbiota composition in the Adnp+/- mouse model. We have discovered a surprising robust sexually dichotomized Adnp genotype effect and correction by NAP (CP201) as follows. Most of the commensal bacterial microbiota tested were affected by the Adnp genotype and corrected by NAP treatment in a male sex-dependent manner. The following list includes all the bacterial groups tested-labeled in bold are male Adnp-genotype increased and corrected (decreased) by NAP. (1) Eubacteriaceae (EubV3), (2) Enterobacteriaceae (Entero), (3) Enterococcus genus (gEncocc), (4) Lactobacillus group (Lacto), (5) Bifidobacterium genus (BIF), (6) Bacteroides/Prevotella species (Bac), (7) Clostridium coccoides group (Coer), (8) Clostridium leptum group (Cluster IV, sgClep), and (9) Mouse intestinal Bacteroides (MIB). No similarities were found between males and females regarding sex- and genotype-dependent microbiota distributions. Furthermore, a female Adnp+/- genotype associated decrease (contrasting male increase) was observed in the Lactobacillus group (Lacto). Significant correlations were discovered between specific bacterial group loads and open-field behavior as well as social recognition behaviors. In summary, we discovered ADNP deficiency associated changes in commensal gut microbiota compositions, a sex-dependent biomarker for the ADNP syndrome and beyond. Strikingly, we discovered rapidly detected NAP (CP201) treatment-dependent biomarkers within the gut microbiota.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal , Microbioma Gastrointestinal , Naftoquinonas/farmacologia , Proteínas do Tecido Nervoso/deficiência , Animais , Transtorno do Espectro Autista/microbiologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Genótipo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Transgênicos , Naftoquinonas/administração & dosagem , Naftoquinonas/farmacocinética , Proteínas do Tecido Nervoso/genética , Comportamento Social , Cognição Social , Síndrome
11.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937737

RESUMO

The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/- heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.


Assuntos
Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Atividade Motora/genética , Músculo Esquelético/fisiologia , Proteínas do Tecido Nervoso/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Retroalimentação , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/genética , RNA Mensageiro/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Língua/fisiologia , Bexiga Urinária/fisiologia
13.
Neurochem Res ; 44(6): 1494-1507, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30659505

RESUMO

Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.


Assuntos
Transtorno do Espectro Autista/complicações , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Perda Auditiva/etiologia , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Animais , Córtex Auditivo , Transtorno do Espectro Autista/genética , Colina O-Acetiltransferase/metabolismo , Feminino , Glutamato Descarboxilase/metabolismo , Células Ciliadas Auditivas/citologia , Perda Auditiva/genética , Masculino , Camundongos , Mutação
14.
Bioessays ; 39(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940660

RESUMO

Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.


Assuntos
Doença de Alzheimer/metabolismo , Transtorno Autístico/metabolismo , Autofagia , Encéfalo/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Esquizofrenia/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Transtorno Autístico/fisiopatologia , Feminino , Humanos , Masculino , Esquizofrenia/fisiopatologia
15.
Nanomedicine ; 17: 359-379, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30759369

RESUMO

Restrained drug delivery due to the blood-brain barrier (BBB) considerably limits options for the treatment of brain pathologies. The utilization of nanoparticulate (NP) carriers has been proposed as a solution. The development strategies need to address the important hurdle of NP passage across the BBB as well as the altered cellular up-take due to the pathophysiological changes of the damaged or diseased tissue as well as immunological and toxicological aspects of nanomedicine penetration. This review therefore scopes to: 1) outline the state-of-the art knowledge on BBB passage, 2) address the significant influence of pathological conditions on nanoparticulate drug delivery, and, 3) highlight the largely neglected role of the extracellular matrix (ECM). Interactions of the nanosystem with biological barriers, cells and ECM in the milieu of brain pathologies are critically discussed in order to present a holistic overview of the advances and pits of nanomedicine applications in brain disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalopatias/tratamento farmacológico , Preparações de Ação Retardada/metabolismo , Matriz Extracelular/metabolismo , Nanopartículas/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Humanos , Neurofarmacologia
16.
J Neurosci Res ; 95(1-2): 652-660, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870441

RESUMO

Discovered in our laboratory, activity-dependent neuroprotective protein (ADNP) interacts with key regulatory proteins, including the chromatin remodeling complex SWI/SNF, proteins associated with RNA splicing, RNA translation, microtubule dynamics, and autophagy. ADNP regulates > 400 genes during mouse embryonic development and is essential for neural tube closure. ADNP key functions extend from mice to men, with mutations causing ADNP-related ID/autism syndrome, also known as the Helsmoortel-Van der Aa syndrome. ADNP mRNA increases in lymphocytes derived from schizophrenia patients and in patients suffering from mild cognitive impairment (MCI) and further increases in Alzheimer's disease patients compared with controls. Serum ADNP levels correlate with IQ. NAP (davunetide), an ADNP snippet drug candidate, protects cognition in patients suffering from amnestic MCI preceding Alzheimer's disease and significantly enhances functional daily activities in schizophrenia patients toward future development. It is important to note that ADNP is sexually regulated in the brains of birds, mice, and men and in lymphocytes of patients suffering from schizophrenia. ADNP haploinsufficiency in mice results in significantly decreased axonal transport (with male-female differences) changes in gene expression in a sex-dependent manner, including key regulatory mechanisms during brain and heart development and function and behavioral outcomes. These findings pave the path for better understanding of brain function through the prism of sex differences. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/metabolismo , Transtorno Autístico/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/metabolismo , Caracteres Sexuais , Fatores Etários , Doença de Alzheimer/patologia , Animais , Transtorno Autístico/patologia , Encéfalo/metabolismo , Humanos , Esquizofrenia/patologia
17.
Biol Chem ; 397(3): 177-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25955282

RESUMO

Fifteen years ago we discovered activity-dependent neuroprotective protein (ADNP), and showed that it is essential for brain formation/function. Our protein interaction studies identified ADNP as a member of the chromatin remodeling complex, SWI/SNF also associated with alternative splicing of tau and prediction of tauopathy. Recently, we have identified cytoplasmic ADNP interactions with the autophagy regulating microtubule-associated protein 1 light chain 3 (LC3) and with microtubule end-binding (EB) proteins. The ADNP-EB-binding SIP domain is shared with the ADNP snippet drug candidate, NAPVSIPQ termed NAP (davunetide). Thus, we identified a precise target for ADNP/NAP (davunetide) neuroprotection toward improved drug development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtorno Autístico/tratamento farmacológico , Citoesqueleto/efeitos dos fármacos , Descoberta de Drogas , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroproteção/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Autofagia/efeitos dos fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Proteínas do Tecido Nervoso/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
18.
Cytoskeleton (Hoboken) ; 81(1): 16-23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572043

RESUMO

With 50 years to the original discovery of Tau, I gave here my perspective, looking through the prism of activity-dependent neuroprotective protein (ADNP), and the influence of sex. My starting point was vasoactive intestinal peptide (VIP), a regulator of ADNP. I then moved to the original discovery of ADNP and its active neuroprotective site, NAP, drug candidate, davunetide. Tau-ADNP-NAP interactions were then explained with emphasis on sex and future translational medicine.

19.
J Mol Neurosci ; 74(1): 15, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282129

RESUMO

Activity-dependent neuroprotective protein (ADNP) is essential for neurodevelopment and de novo mutations in ADNP cause the ADNP syndrome. From brain pathologies point of view, tauopathy has been demonstrated at a young age, implying stunted development coupled with early/accelerated neurodegeneration. Given potential genotype-phenotype differences and age-dependency, we have assessed here a cohort of 15 individuals (1-27-year-old), using 1-3 longitudinal parent (caretaker) interview/s (Vineland 3 questionnaire) over several years. Our results indicated developmental delays, or even developmental arrests, coupled with potential spurts of development at early ages. Severe outcomes correlated with the truncating high impact mutation, in other words, the remaining mutated protein length as well as with the tested individual age, corroborating the hypothesis of developmental delays coupled with accelerated aging. A significant correlation was noted between mutated protein length and communication, implying a high impact of ADNP on communicative skills. Additionally, correlations were discovered between the two previously described epi-genetic signatures in ADNP emphasizing aberrant acquisition of motor behaviors, with truncating mutations around the nuclear localization signal being mostly affected. Finally, all individuals seem to acquire an age equivalent of 1-6 years, requiring disease modification treatment, such as the ADNP-derived drug candidate, NAP (davunetide), which has recently shown efficacy in women suffering from the neurodegenerative disorder, progressive supranuclear palsy (PSP), a late-onset tauopathy.


Assuntos
Proteínas de Homeodomínio , Tauopatias , Masculino , Humanos , Feminino , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Mutação , Síndrome , Proteínas de Homeodomínio/genética , Fenótipo , Genótipo , Proteínas do Tecido Nervoso/genética
20.
Heliyon ; 10(12): e33329, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027436

RESUMO

The cell surface protease-activated receptor 1 (PAR1) is overexpressed in glioblastoma multiforme (GBM). We studied the function and structure of intracellular microtubule (MT) and PAR1 in a tubulin-mediated process. We found that exposure to thrombin increased the percentage of proliferative, S, and M phases cells, affected morphology, and increased process elongation. PAR1 antagonist inversely affects these measures, increases tubulin end-binding protein 3 (EB3) mRNA expression in C6 cells, and reduces EB3 comet length, track length, and duration in neuroblastoma cells. In addition, immunofluorescence staining suggests that PAR1 is in close association with the MT α-tubulin and with coagulation cascade proteins during cell division stages. Our findings support PAR1 involvement in MT dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA