Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 5: 1926-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383304

RESUMO

One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown.

2.
Clin Biomech (Bristol, Avon) ; 27(9): 955-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22883073

RESUMO

BACKGROUND: Heterogeneous distribution of tendon strain is considered to contribute to the development of the Achilles tendon overuse injuries. Force distribution between the three portions of the triceps surae muscle and position of the calcaneus might affect the extent of strain differences within the Achilles tendon. Purpose of this study was to determine the effect of changes in force distribution within the triceps muscle and changes in calcaneus position on intratendinous strain distribution of the Achilles tendon. METHODS: Five cadaveric Achilles tendons including complete triceps surae and calcaneus were dissected. Specimens were mounted in a loading simulator allowing independent force application for the three parts of triceps muscle and changes calcaneus eversion and inversion position. Strain was determined in different aspects of the Achilles tendon. FINDINGS: Changes of calcaneus position resulted in intratendinous strain differences up to 15%, changes in force distribution within the triceps muscle resulted in strain differences up to 2.5%. Calcaneal eversion was connected to a higher degree of strain in medial tendon portions, while inversion increased strain in lateral tendon portions. INTERPRETATION: Medio-lateral, proximo-distal and dorsal-ventral distribution of tendon strain is rather influenced by kinematics of the subtalar joint than by muscular imbalances within the triceps muscle. Clinical movement analyses should focus on motion pattern combining rearfoot eversion with high Achilles tendon load. The results indicate that twist of the Achilles tendon fascicles seems of paramount importance in balancing tendon strain. To get more insight into the Achilles tendon injuries pathogenesis future research should focus on methods monitoring heterogeneous distribution of strain in vivo.


Assuntos
Tendão do Calcâneo/fisiologia , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Anatômicos , Estresse Mecânico , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA