Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 175(5): e14018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882256

RESUMO

MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444). Pri-microRNAs444 undergo extensive alternative splicing, generating functional and nonfunctional pri-miRNA444 isoforms. We show that barley pri-miRNAs444 contain numerous open reading frames (ORFs) whose transcripts associate with ribosomes. Using specific antibodies, we provide evidence that selected ORFs encoding PEP444a within MIR444a and PEP444c within MIR444c are expressed in barley plants. Moreover, we demonstrate that CRISPR-associated endonuclease 9 (Cas9)-mediated mutagenesis of the PEP444c-encoding sequence results in a decreased level of PEP444 transcript in barley shoots and roots and a 5-fold reduced level of mature microRNA444c in roots. Our observations suggest that PEP444c encoded by the MIR444c gene is involved in microRNA444c biogenesis in barley.


Assuntos
Hordeum , MicroRNAs , Hordeum/genética , Hordeum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo
2.
Plant Cell Environ ; 44(2): 548-558, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131061

RESUMO

In Arabidopsis, two leaf-type ferredoxin-NADP+ oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP+ , while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using ß-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Oxirredutases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Transporte de Elétrons , Ferredoxina-NADP Redutase/genética , Oxirredutases/metabolismo , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plastídeos/enzimologia , Isoformas de Proteínas , Estresse Fisiológico
3.
Plant Cell ; 30(8): 1695-1709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967049

RESUMO

The amount of light energy received by the photosynthetic reaction centers photosystem II (PSII) and photosystem I (PSI) is balanced through state transitions. Reversible phosphorylation of a light-harvesting antenna trimer (L-LHCII) orchestrates the association between L-LHCII and the photosystems, thus adjusting the amount of excitation energy received by the reaction centers. In this study, we identified the enzyme NUCLEAR SHUTTLE INTERACTING (NSI; AT1G32070) as an active lysine acetyltransferase in the chloroplasts of Arabidopsis thaliana Intriguingly, nsi knockout mutant plants were defective in state transitions, even though they had a similar LHCII phosphorylation pattern as the wild type. Accordingly, nsi plants were not able to accumulate the PSI-LHCII state transition complex, even though the LHCII docking site of PSI and the overall amounts of photosynthetic protein complexes remained unchanged. Instead, the nsi mutants showed a decreased Lys acetylation status of specific photosynthetic proteins including PSI, PSII, and LHCII subunits. Our work demonstrates that the chloroplast acetyltransferase NSI is needed for the dynamic reorganization of thylakoid protein complexes during photosynthetic state transitions.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/enzimologia , Arabidopsis/genética , Cloroplastos/genética , Mutação , Fosforilação/genética , Fosforilação/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
4.
Plant J ; 99(2): 245-256, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30888718

RESUMO

During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6 f complex, ATP synthase and several isoforms of ferredoxin-NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6 f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6 f complex, FNR and redox-inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6 f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6 f complex during cyclic electron transport in chloroplasts.


Assuntos
Transporte de Elétrons , Narcissus/metabolismo , Plastídeos/metabolismo , Clorofila A/metabolismo , Complexo Citocromos b6f/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Oxirredução , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética
5.
BMC Plant Biol ; 20(1): 413, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887556

RESUMO

BACKGROUND: Non-photosynthetic plastids of plants are known to be involved in a range of metabolic and biosynthetic reactions, even if they have been difficult to study due to their small size and lack of color. The morphology of root plastids is heterogeneous and also the plastid size, density and subcellular distribution varies depending on the cell type and developmental stage, and therefore the functional features have remained obscure. Although the root plastid proteome is likely to reveal specific functional features, Arabidopsis thaliana root plastid proteome has not been studied to date. RESULTS: In the present study, we separated Arabidopsis root protein fraction enriched with plastids and mitochondria by 2D-PAGE and identified 84 plastid-targeted and 77 mitochondrion-targeted proteins using LC-MS/MS. The most prevalent root plastid protein categories represented amino acid biosynthesis, carbohydrate metabolism and lipid biosynthesis pathways, while the enzymes involved in starch and sucrose metabolism were not detected. Mitochondrion-targeted proteins were classified mainly into the energetics category. CONCLUSIONS: This is the first study presenting gel-based map of Arabidopsis thaliana root plastid and mitochondrial proteome. Our findings suggest that Arabidopsis root plastids have broad biosynthetic capacity, and that they do not play a major role in a long-term storage of carbohydrates. The proteomic map provides a tool for further studies to compare changes in the proteome, e.g. in response to environmental cues, and emphasizes the role of root plastids in nitrogen and sulfur metabolism as well as in amino acid and fatty acid biosynthesis. The results enable taking a first step towards an integrated view of root plastid/mitochondrial proteome and metabolic functions in Arabidopsis thaliana roots.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico , Mitocôndrias/genética , Proteínas de Plantas/genética , Plastídeos/genética , Proteoma/genética , Eletroforese em Gel Bidimensional , Raízes de Plantas/genética , Proteômica
6.
Plant Cell ; 28(3): 712-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941088

RESUMO

LIR1 (LIGHT-INDUCED RICE1) encodes a 13-kD, chloroplast-targeted protein containing two nearly identical motifs of unknown function. LIR1 is present in the genomes of vascular plants, mosses, liverworts, and algae, but not in cyanobacteria. Using coimmunoprecipitation assays, pull-down assays, and yeast two-hybrid analyses, we showed that LIR1 interacts with LEAF-TYPE FERREDOXIN-NADP(+) OXIDOREDUCTASE (LFNR), an essential chloroplast enzyme functioning in the last step of photosynthetic linear electron transfer. LIR1 and LFNR formed high molecular weight thylakoid protein complexes with the TIC62 and TROL proteins, previously shown to anchor LFNR to the membrane. We further showed that LIR1 increases the affinity of LFNRs for TIC62 and that the rapid light-triggered degradation of the LIR1 coincides with the release of the LFNR from the thylakoid membrane. Loss of LIR1 resulted in a marked decrease in the accumulation of LFNR-containing thylakoid protein complexes without a concomitant decrease in total LFNR content. In rice (Oryza sativa), photosynthetic capacity of lir1 plants was slightly impaired, whereas no such effect was observed in Arabidopsis thaliana knockout mutants. The consequences of LIR1 deficiency in different species are discussed.


Assuntos
Arabidopsis/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Oryza/enzimologia , Fotossíntese , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Transporte de Elétrons , Ferredoxina-NADP Redutase/genética , Ferredoxinas/metabolismo , Luz , Complexos Multiproteicos , Mutação , NADP/metabolismo , Oryza/genética , Oryza/efeitos da radiação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteólise , Especificidade da Espécie , Tilacoides/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Physiol Plant ; 154(4): 591-608, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25594504

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is highly regulated in response to fluctuations in the environment, including changes in irradiance. However, no complex data are available on Rubisco regulatory mechanisms triggered in plants which are submitted to moderate-low irradiance shift. Therefore, we investigated in a comprehensive way the changes at the level of amount of Rubisco protein, its structural organization and carboxylase activity of the holoenzyme as triggered by exposure of moderate irradiance-grown Arabidopsis thaliana plants to low irradiance conditions. An exposure of moderate irradiance-grown plants to low irradiance for a single photoperiod caused the exclusion of a certain pool of Rubisco under altered conditions owing to oxidative modifications resulting in the formation of protein aggregates involving Rubisco large subunit (LS). As a result, both initial and total Rubisco carboxylase activities were reduced, whereas Rubisco activation state remained largely unchanged. The results of the determination of reactive oxygen species indicated that a moderate/low irradiance transition had stimulated (1) O2 accumulation and we strongly suggest that Rubisco oxidative modifications leading to formation of aggregates encompassing Rubisco-LS were triggered by (1) O2 . When moderate irradiance regime was resumed, the majority of Rubisco-LS containing aggregates tended to be resolubilized, and this allowed Rubisco carboxylation activities to be largely recovered, without changes in the activation state of the enzyme. In the longer term, these results allow us to better understand a complexity of Rubisco regulatory mechanisms activated in response to abiotic stresses and during recovery from the stresses.


Assuntos
Arabidopsis/fisiologia , Ácidos Carboxílicos/metabolismo , Luz , Ribulose-Bifosfato Carboxilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Folhas de Planta/efeitos da radiação , Biossíntese de Proteínas , Transcrição Gênica
8.
J Appl Genet ; 64(2): 197-215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36586056

RESUMO

Metal-tolerance proteins (MTPs) are divalent cation transporters that play critical roles in metal tolerance and ion homeostasis in plants. However, a comprehensive study of MTPs is still lacking in crop plants. The current study aimed to comprehensively identify and characterize the MTP gene family in barley (Hordeum vulgare, Hv), an important crop. In total, 12 HvMTPs were identified in the barley genome in this study. They were divided into three phylogenetic groups (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). The majority of MTPs were hydrophobic proteins found in the vacuolar membrane. Gene duplication analysis of HvMTPs revealed one pair of segmental-like duplications in the barley genome. Evolutionary analysis suggested that barley MTPs underwent purifying natural selection. Additionally, the HvMTPs were analyzed in the pan-genome sequences of barley (20 accessions), which suggests that HvMTPs are highly conserved in barley evolution. Cis-acting regulatory elements, microRNA target sites, and protein-protein interaction analysis indicated the role of HvMTPs in a variety of biological processes. Expression profiling suggests that HvMTPs play an active role in maintaining barley nutrient homeostasis throughout its life cycle, and their expression levels were not significantly altered by abiotic stresses like cold, drought, or heat. The expression of barley HvMTP genes in the presence of heavy metals such as Zn2+, Cu2+, As3+, and Cd2+ revealed that these MTPs were induced by at least one metal ion, implying their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP gene family members will provide important gene resources for the genetic improvement of crops for metal tolerance, bioremediation, or biofortification of staple crops.


Assuntos
Hordeum , Hordeum/genética , Filogenia , Sequência de Aminoácidos , Proteínas de Plantas/genética , Estresse Fisiológico/genética
9.
Front Plant Sci ; 14: 1194737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332717

RESUMO

Nitrogen (N) is one of the most expensive nutrients to supply, therefore, improving the efficiency of N use is essential to reduce the cost of commercial fertilization in plant production. Since cells cannot store reduced N as NH3 or NH4 +, polyamines (PAs), the low molecular weight aliphatic nitrogenous bases, are important N storage compounds in plants. Manipulating polyamines may provide a method to increase nitrogen remobilization efficiency. Homeostasis of PAs is maintained by intricate multiple feedback mechanisms at the level of biosynthesis, catabolism, efflux, and uptake. The molecular characterization of the PA uptake transporter (PUT) in most crop plants remains largely unknown, and knowledge of polyamine exporters in plants is lacking. Bi-directional amino acid transporters (BATs) have been recently suggested as possible PAs exporters for Arabidopsis and rice, however, detailed characterization of these genes in crops is missing. This report describes the first systematic study to comprehensively analyze PA transporters in barley (Hordeum vulgare, Hv), specifically the PUT and BAT gene families. Here, seven PUTs (HvPUT1-7) and six BATs (HvBAT1-6) genes were identified as PA transporters in the barley genome and the detailed characterization of these HvPUT and HvBAT genes and proteins is provided. Homology modeling of all studied PA transporters provided 3D structures prediction of the proteins of interest with high accuracy. Moreover, molecular docking studies provided insights into the PA-binding pockets of HvPUTs and HvBATs facilitating improved understanding of the mechanisms and interactions involved in HvPUT/HvBAT-mediated transport of PAs. We also examined the physiochemical characteristics of PA transporters and discuss the function of PA transporters in barley development, and how they help barley respond to stress, with a particular emphasis on leaf senescence. Insights gained here could lead to improved barley production via modulation of polyamine homeostasis.

10.
Front Plant Sci ; 13: 1064131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684776

RESUMO

Crop losses caused by climate change and various (a)biotic stressors negatively affect agriculture and crop production. Therefore, it is vital to develop a proper understanding of the complex response(s) to (a)biotic stresses and delineate them for each crop plant as a means to enable translational research. In plants, the improvement of crop quality by m6A editing is believed to be a promising strategy. As a reaction to environmental changes, m6A modification showed a high degree of sensitivity and complexity. We investigated differences in gene medleys between dark-induced leaf senescence (DILS) and developmental leaf senescence in barley, including inter alia RNA modifications active in DILS. The identified upregulated genes in DILS include RNA methyltransferases of different RNA types, embracing enzymes modifying mRNA, tRNA, and rRNA. We have defined a decisive moment in the DILS model which determines the point of no return, but the mechanism of its control is yet to be uncovered. This indicates the possibility of an unknown additional switch between cell survival and cell death. Discoveries of m6A RNA modification changes in certain RNA species in different stages of leaf senescence may uncover the role of such modifications in metabolic reprogramming. Nonetheless, there is no such data about the process of leaf senescence in plants. In this scope, the prospect of finding connections between the process of senescence and m6A modification of RNA in plants seems to be compelling.

11.
Postepy Biochem ; 57(1): 101-8, 2011.
Artigo em Polonês | MEDLINE | ID: mdl-21735825

RESUMO

Arabidopsis thaliana proteome contains 667 proteases; some tens of them are chloroplast-targeted proteins, encoded by genes orthologous to the ones coding for bacterial proteolytic enzymes. It is thought that chloroplast proteases are involved in chloroplasts' proteins turnover and quality control (maturation of nucleus-encoded proteins and removal of nonfunctional ones). Some ATP-dependent chloroplast proteases belonging to FtsH family (especially FtsH2 and FtsH5) are considered to be involved in numerous aspects of chloroplast and whole plant maintenance under non-stressing as well as stressing conditions. This notion is supported by severe phenotype appearance of mutants deficient in these proteases. In contrast to seemingly high physiological importance of chloroplast members of FtsH protease family, only a few individual proteins have been identified so far as their physiological targets (i.e. Lhcb1, Lhcb3, PsbA and Rieske protein). Our knowledge regarding structure and molecular mechanisms of these enzymes' action is limited when compared with what is known about FtsHs of bacterial origin. Equally limited is the knowledge about ATP-dependent Lon4 protease being the single known chloroplast-targeted ortholog of Lon protease of Escherichia coli.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Membrana/metabolismo , Protease La/metabolismo , Proteases Dependentes de ATP/química , Proteínas de Arabidopsis/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Metaloproteases/química , Metaloproteases/metabolismo , Mutação
12.
Postepy Biochem ; 57(1): 109-14, 2011.
Artigo em Polonês | MEDLINE | ID: mdl-21735826

RESUMO

For some chloroplast proteases ATP binding and hydrolysis is not necessary for their catalytic activity, most probably because even strongly unfolded substrates may penetrate their catalytic chamber. Deg1, 2, 5 and 8 are the best known of Arabidopsis thaliana ATP- independent chloroplast proteases, encoded by orthologues of genes coding for DegP, DegQ and DegS proteases of Escherichia coli. Current awareness in the area of structure and functions of chloroplast Degs is much more limited vs the one about their bacterial counterparts. Deg5 and Deg8 form a catalytic heterododecamer which is loosely attached to luminal side of thylakoid membrane. The complex catalyses--supported by Deg1 and one of FtsH proteases--the degradation of PsbA damaged due to plant exposition to elevated irradiance and thus these protease are of key importance for the plants' sensitivity to photoinhibition. Deg2 role in the disposal of damaged PsbA has not been elucidated. Recombinant Deg1 may degrade PsbO and plastocyanin in vitro but it is not clear whether this reaction is performed in vivo as well.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas de Arabidopsis/química , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade por Substrato
13.
Front Plant Sci ; 8: 240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280500

RESUMO

Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA