Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Ecol Lett ; 26(3): 411-424, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36688259

RESUMO

In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.


Assuntos
Ecossistema , Herbivoria , Animais , Invertebrados , Biomassa , Plantas , Cadeia Alimentar , Comportamento Predatório
2.
J Anim Ecol ; 92(6): 1106-1109, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37282669

RESUMO

Research Highlight: Davis, C. L., Walls, S. C., Barichivich, W. J., Brown, M. E., & Miller, D. A. (2022). Disentangling direct and indirect effects of extreme events on coastal wetland communities. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13874. Catastrophic events such as floods, hurricanes, winter storms, droughts and wildfires increasingly touch our lives either directly or indirectly. These events draw our attention to the seriousness of changes in climate not only to human well-being but also to the integrity of ecological systems upon which we depend. Understanding the impacts of extreme events on ecological systems requires the ability to characterize the cascading effects of environmental changes on the environments in which organisms live and the altered biological interactions produced. This scientific ambition represents no small challenge for the study of animal communities, which are typically difficult to census as well as dynamic in time and space. Davis et al. (2022) in a recent study in the Journal of Animal Ecology examined the amphibian and fish communities found in depressional coastal wetlands to better understand how they respond to major rainfall and flooding events. Data from the U.S. Geological Survey's Amphibian Research and Monitoring Initiative provided an 8-year record of observations as well as environmental measurements. For this study, the authors integrated techniques for assessing the dynamics of animal populations with a Bayesian implementation of structural equation modelling. Using their integrated methodological approach permitted the authors to reveal the direct and indirect effects of extreme weather events on co-occurring amphibian and fish communities while accounting for observational uncertainty and temporal variation in population-level processes. Their findings indicate that the most prominent effects of flooding on the amphibian community were caused by changes in the fish community that led to increased predation and resource competition. In their conclusions, the authors emphasize the importance of understanding networks of abiotic and biotic effects if we are to predict and mitigate the influence of extreme weather events.


Assuntos
Ecossistema , Inundações , Animais , Humanos , Teorema de Bayes , Ecologia , Anfíbios , Mudança Climática
3.
Nature ; 529(7586): 390-3, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26760203

RESUMO

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Assuntos
Biodiversidade , Pradaria , Modelos Biológicos , Plantas/classificação , Plantas/metabolismo , Comportamento Competitivo , Geografia
4.
Ecology ; 99(4): 822-831, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603733

RESUMO

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Assuntos
Pradaria , Herbivoria , Animais , Biomassa , Ecossistema , Eutrofização , Humanos , Nitrogênio , Nutrientes
5.
Glob Chang Biol ; 24(11): 5361-5379, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29957880

RESUMO

Coastal wetlands are among the most productive and carbon-rich ecosystems on Earth. Long-term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate-plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services.


Assuntos
Carbono/metabolismo , Mudança Climática , Fenômenos Fisiológicos Vegetais , Solo/química , Áreas Alagadas , Sequestro de Carbono , Ecossistema , Água Doce , Salinidade , Temperatura
6.
Nature ; 486(7401): 59-67, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678280

RESUMO

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Assuntos
Biodiversidade , Extinção Biológica , Atividades Humanas , Animais , Mudança Climática/estatística & dados numéricos , Consenso , Ecologia/métodos , Ecologia/tendências , Humanos
7.
Am Nat ; 190(5): 663-679, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29053355

RESUMO

Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Lobos/fisiologia , Alaska , Animais , Carnívoros/fisiologia , Densidade Demográfica , Dinâmica Populacional
8.
Glob Chang Biol ; 22(1): 1-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26342186

RESUMO

Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.


Assuntos
Mudança Climática , Áreas Alagadas , Ecossistema , Chuva , Temperatura
9.
Ecology ; 96(12): 3323-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909437

RESUMO

Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.


Assuntos
Pradaria , Plantas/classificação , Animais , Incêndios , Fenômenos Geológicos , Missouri , Desenvolvimento Vegetal , Solo/química
10.
Ecol Lett ; 16(5): 617-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23438189

RESUMO

As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.


Assuntos
Biodiversidade , Ecossistema , Modelos Teóricos , Biomassa , Simulação por Computador , Alemanha , Minnesota , Modelos Biológicos , Países Baixos , Poaceae , Dinâmica Populacional , Processos Estocásticos , Texas
11.
Ecology ; 94(2): 510-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23691669

RESUMO

In coastal marine food webs, small invertebrate herbivores (mesograzers) have long been hypothesized to occupy an important position facilitating dominance of habitat-forming macrophytes by grazing competitively superior epiphytic algae. Because of the difficulty of manipulating mesograzers in the field, however, their impacts on community organization have rarely been rigorously documented. Understanding mesograzer impacts has taken on increased urgency in seagrass systems due to declines in seagrasses globally, caused in part by widespread eutrophication favoring seagrass overgrowth by faster-growing algae. Using cage-free field experiments in two seasons (fall and summer), we present experimental confirmation that mesograzer reduction and nutrients can promote blooms of epiphytic algae growing on eelgrass (Zostera marina). In this study, nutrient additions increased epiphytes only in the fall following natural decline of mesograzers. In the summer, experimental mesograzer reduction stimulated a 447% increase in epiphytes, appearing to exacerbate seasonal dieback of eelgrass. Using structural equation modeling, we illuminate the temporal dynamics of complex interactions between macrophytes, mesograzers, and epiphytes in the summer experiment. An unexpected result emerged from investigating the interaction network: drift macroalgae indirectly reduced epiphytes by providing structure for mesograzers, suggesting that the net effect of macroalgae on seagrass depends on macroalgal density. Our results show that mesograzers can control proliferation of epiphytic algae, that top-down and bottom-up forcing are temporally variable, and that the presence of macroalgae can strengthen top-down control of epiphytic algae, potentially contributing to eelgrass persistence.


Assuntos
Clorófitas/fisiologia , Ecossistema , Rios , Zosteraceae/fisiologia , Animais , Biomassa , Crustáceos/fisiologia , Herbivoria , Fatores de Tempo , Virginia
12.
Proc Natl Acad Sci U S A ; 107(45): 19362-7, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974978

RESUMO

Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951-2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500-1.200 m above sea level) and primary upper montane to subalpine forests (1,500-2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.


Assuntos
Ecologia , Aquecimento Global , Árvores/crescimento & desenvolvimento , Viridiplantae/crescimento & desenvolvimento , Altitude , Clima
13.
Sci Adv ; 8(26): eabo5174, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767619

RESUMO

Coastal wetlands are not only among the world's most valued ecosystems but also among the most threatened by high greenhouse gas emissions that lead to accelerated sea level rise. There is intense debate regarding the extent to which landward migration of wetlands might compensate for seaward wetland losses. By integrating data from 166 estuaries across the conterminous United States, we show that landward migration of coastal wetlands will transform coastlines but not counter seaward losses. Two-thirds of potential migration is expected to occur at the expense of coastal freshwater wetlands, while the remaining one-third is expected to occur at the expense of valuable uplands, including croplands, forests, pastures, and grasslands. Our analyses underscore the need to better prepare for coastal transformations and net wetland loss due to rising seas.

14.
Ecology ; 92(1): 108-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21560681

RESUMO

In his classic study in the Siskiyou Mountains (Oregon, USA), one of the most botanically rich forested regions in North America, R. H. Whittaker (1960) foreshadowed many modern ideas on the multivariate control of local species richness along environmental gradients related to productivity. Using a structural equation model to analyze his data, which were never previously statistically analyzed, we demonstrate that Whittaker was remarkably accurate in concluding that local herb richness in these late-seral forests is explained to a large extent by three major abiotic gradients (soils, topography, and elevation), and in turn, by the effects of these gradients on tree densities and the numbers of individual herbs. However, while Whittaker also clearly appreciated the significance of large-scale evolutionary and biogeographic influences on community composition, he did not fully articulate the more recent concept that variation in the species richness of local communities could be explained in part by variation in the sizes of regional species pools. Our model of his data is among the first to use estimates of regional species pool size to explain variation in local community richness along productivity-related gradients. We find that regional pool size, combined with a modest number of other interacting abiotic and biotic factors, explains most of the variation in local herb richness in the Siskiyou biodiversity hotspot.


Assuntos
Altitude , Ecossistema , Plantas/classificação , Solo , Árvores , Oregon
15.
J Appl Ecol ; 58(7): 1442-1454, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34413538

RESUMO

Interactions between plants can be beneficial, detrimental or neutral. In agricultural systems, competition between crop and spontaneous vegetation is a major concern. We evaluated the relative support for three non-exclusive ecological hypotheses about interactions between crop and spontaneous plants based on competition, complementarity or facilitation.The study was conducted in Swiss vineyards with different vegetation management intensities. In all, 33 vineyards planted with two different grape varieties were studied over 3 years to determine whether low-intensity vegetation management might provide benefits for grape quality parameters. Management intensity varied with the degree of control of spontaneous inter-row vegetation. Features of spontaneous vegetation measured included total cover, total species richness and abundance of nitrogen-fixing plants. Grape quality parameters of known importance to wine making (yeast assimilable nitrogen, sugars, tartaric acid and malic acid) were determined by Fourier-transform infrared spectroscopy (FTIR). Using structural equation modelling, we evaluated hypotheses about the multivariate responses of grape quality parameters as well as the direct and indirect (plant-mediated) effects of management.Observed effects of management differed between grape varieties. Management intensity and abundance of N-fixing plants significantly influenced grape quality parameters while total richness of spontaneous plants did not have detectable effects. Abundance of N-fixing plants was enhanced by low-intensity management resulting in increased N content in the red grape variety Pinot noir, potentially enhancing grape quality, while measured soil N content did not explain the increase.Synthesis and applications. Our study shows that crop quality can be enhanced by spontaneous plants, in this case by the abundance of a key functional group (N-fixers), most likely through plant-plant or plant-microbe facilitation. However, beneficial interactions may have a high specificity in terms of facilitation partners and may have contrasting effects at low taxonomic resolutions such as crop varieties. Generally, increasing plant biodiversity in agricultural systems may increase competition with crops. Thus, the identification of suitable interaction partners and a careful balance between crop variety and spontaneous plant species may be necessary to utilize beneficial interactions and to reduce the trade-off between agricultural production and biodiversity to achieve a sustainable ecological benefit in agricultural systems.

16.
Ecology ; 91(12): 3609-19, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302832

RESUMO

Species with relatively narrow niches, such as plants restricted (endemic) to particular soils, may be especially vulnerable to extinction under a changing climate due to the enhanced difficulty they face in migrating to suitable new sites. To test for community-level effects of climate change, and to compare such effects in a highly endemic-rich flora on unproductive serpentine soils vs. the flora of normal (diorite) soils, in 2007 we resampled as closely as possible 108 sites originally studied by ecologist Robert H. Whittaker from 1949 to 1951 in the Siskiyou Mountains of southern Oregon, USA. We found sharp declines in herb cover and richness on both serpentine and diorite soils. Declines were strongest in species of northern biogeographic affinity, species endemic to the region (in serpentine communities only), and species endemic to serpentine soils. Consistent with climatic warming, herb communities have shifted from 1949-1951 to 2007 to more closely resemble communities found on xeric (warm, dry) south-facing slopes. The changes found in the Siskiyou herb flora suggest that biotas rich in narrowly distributed endemics may be particularly susceptible to the effects of a warming climate.


Assuntos
Mudança Climática , Ecossistema , Plantas/classificação , Demografia , Oregon , Plantas/metabolismo , Fatores de Tempo
17.
Ecology ; 91(5): 1519-29, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503883

RESUMO

Mechanistic explanations of herbivore spatial distribution have focused largely on either resource-related (bottom-up) or predation-related (top-down) factors. We studied direct and indirect influences on the spatial distributions of Serengeti herbivore hotspots, defined as temporally stable areas inhabited by mixed herds of resident grazers. Remote sensing and variation in landscape features were first used to create a map of the spatial distribution of hotspots, which was tested for accuracy against an independent data set of herbivore observations. Subsequently, we applied structural equation modeling to data on soil fertility and plant quality and quantity across a range of sites. We found that hotspots in Serengeti occur in areas that are relatively flat and located away from rivers, sites where ungulates are less susceptible to predation. Further, hotspots tend to occur in areas where hydrology and rainfall create conditions of relatively low-standing plant biomass, which, coupled with grazing, increases forage quality while decreasing predation risk. Low-standing biomass and higher leaf concentrations of N, Na, and Mg were strong direct predictors of hotspot occurrence. Soil fertility had indirect effects on hotspot occurrence by promoting leaf Na and Mg. The results indicate that landscape features contribute in direct and indirect ways to influence the spatial distribution of hotspots and that the best models incorporated both resource- and predation-related factors. Our study highlights the collective and simultaneous role of bottom-up and top-down factors in determining ungulate spatial distributions.


Assuntos
Antílopes/fisiologia , Ecossistema , Equidae/fisiologia , Comportamento Alimentar/fisiologia , Suínos/fisiologia , África , Animais , Demografia , Modelos Biológicos
18.
Ecol Appl ; 20(1): 192-204, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20349840

RESUMO

The success of population-based ecological restoration relies on the growth and reproductive performance of selected donor materials, whether consisting of whole plants or seed. Accurately predicting performance requires an understanding of a variety of underlying processes, particularly gene flow and selection, which can be measured, at least in part, using surrogates such as neutral marker genetic distances and simple latitudinal effects. Here we apply a structural equation modeling approach to understanding and predicting performance in a widespread salt marsh grass, Spartina alterniflora, commonly used for ecological restoration throughout its native range in North America. We collected source materials from throughout this range, consisting of eight clones each from 23 populations, for transplantation to a common garden site in coastal Louisiana and monitored their performance. We modeled performance as a latent process described by multiple indicator variables (e.g., clone diameter, stem number) and estimated direct and indirect influences of geographic and genetic distances on performance. Genetic distances were determined by comparison of neutral molecular markers with those from a local population at the common garden site. Geographic distance metrics included dispersal distance (the minimum distance over water between donor and experimental sites) and latitude. Model results indicate direct effects of genetic distance and latitude on performance variation among the donor sites. Standardized effect strengths indicate that performance was roughly twice as sensitive to variation in genetic distance as to latitudinal variation. Dispersal distance had an indirect influence on performance through effects on genetic distance, indicating a typical pattern of genetic isolation by distance. Latitude also had an indirect effect on genetic distance through its linear relationship with dispersal distance. Three performance indicators had significant loadings on performance alone (mean clone diameter, mean number of stems, mean number of inflorescences), while the performance indicators mean stem height and mean stem width were also influenced by latitude. We suggest that dispersal distance and latitude should provide an adequate means of predicting performance in future S. alterniflora restorations and propose a maximum sampling distance of 300 km (holding latitude constant) to avoid the sampling of inappropriate ecotypes.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Poaceae/fisiologia , Louisiana
19.
Sci Total Environ ; 704: 135268, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31810677

RESUMO

Streams are influenced by watershed-scale factors, such as climate, geology, topography, hydrology, and soils, which mostly vary naturally among sites, as well as human factors, agriculture and urban development. Thus, natural factors could complicate assessment of human disturbance. In the present study, we use structural equation modeling and data from the 2008-2009 United States National Rivers and Streams Assessment to quantify the relative importance of watershed-scale natural and human factors for in-stream conditions. We hypothesized that biological condition, represented using a diatom multimetric index (MMI), is directly affected by in-stream physicochemical environment, which in turn is regulated by natural and human factors. We evaluated this hypothesis at both national and ecoregion scales to understand how influences vary among regions. We found that direct influences of in-stream environment on diatom MMIs were greater than natural and human factors at the national scale and in all but one ecoregion. Meanwhile, in-stream environments were jointly explained by natural variations in precipitation, base flow index, hydrological stability, % volcanic rock, soil water table depth, and soil depth and by human factors measured as % crops, % other agriculture, and % urban land use. The explained variance of in-stream environment by natural and human factors ranged from 0.30 to 0.75, for which natural factors independently accounted for the largest proportion of explained variance at the national scale and in seven ecoregions. Covariation between natural and human factors accounted for a higher proportion of explained variance of in-stream environment than unique effects of human factors in most ecoregions. Ecoregions with relatively weak effects by human factors had relatively high levels of covariance, high levels of human disturbance, or small ranges in human disturbance. We conclude that accounting for effects of natural factors and their covariation with human factors will be important for accurate ecological assessments.


Assuntos
Monitoramento Ambiental , Rios/química , Poluição da Água/análise , Biodiversidade , Ecologia , Ecossistema , Humanos , Hidrologia , Estados Unidos
20.
Ecology ; 101(4): e02962, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872426

RESUMO

Recent discussions of model selection and multimodel inference highlight a general challenge for researchers: how to convey the explanatory content of a hypothesized model or set of competing models clearly. The advice from statisticians for scientists employing multimodel inference is to develop a well-thought-out set of candidate models for comparison, though precise instructions for how to do that are typically not given. A coherent body of knowledge, which falls under the general term causal analysis, now exists for examining the explanatory scientific content of candidate models. Much of the literature on causal analysis has been recently developed, and we suspect may not be familiar to many ecologists. This body of knowledge comprises a set of graphical tools and axiomatic principles to support scientists in their endeavors to create "well-formed hypotheses," as statisticians are asking them to do. Causal analysis is complementary to methods such as structural equation modeling, which provides the means for evaluation of proposed hypotheses against data. In this paper, we summarize and illustrate a set of principles that can guide scientists in their quest to develop explanatory hypotheses for evaluation. The principles presented in this paper have the capacity to close the communication gap between statisticians, who urge scientists to develop well-thought-out coherent models, and scientists, who would like some practical advice for exactly how to do that.


Assuntos
Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA