Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Biomech Eng ; 145(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773639

RESUMO

Intervertebral disc (IVD) degeneration and methods for repair and regeneration have commonly been studied in organ cultures with animal IVDs under compressive loading. With the recent establishment of a novel multi-axial organ culture system, accurate predictions of the global and local mechanical response of the IVD are needed for control system development and to aid in experiment planning. This study aimed to establish a finite element model of bovine IVD capable of predicting IVD behavior at physiological and detrimental load levels. A finite element model was created based on the dimensions and shape of a typical bovine IVD used in the organ culture. The nucleus pulposus (NP) was modeled as a neo-Hookean poroelastic material and the annulus fibrosus (AF) as a fiber-reinforced poroviscoelastic material. The AF consisted of 10 lamella layers and the material properties were distributed in the radial direction. The model outcome was compared to a bovine IVD in a compressive stress-relaxation experiment. A parametric study was conducted to investigate the effect of different material parameters on the overall IVD response. The model was able to capture the equilibrium response and the relaxation response at physiological and higher strain levels. Permeability and elastic stiffness of the AF fiber network affected the overall response most prominently. The established model can be used to evaluate the response of the bovine IVD at strain levels typical for organ culture experiments, to define relevant boundaries for such studies, and to aid in the development and use of new multi-axial organ culture systems.

2.
Eur Spine J ; 32(6): 2048-2058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071156

RESUMO

PURPOSE: This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS: hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1ß. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 µM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS: IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1ß treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION: Cxb can inhibit PGE-2 production in hAFCs in an IL-1ß-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM.


Assuntos
Anel Fibroso , Humanos , Animais , Bovinos , Interleucina-1beta/farmacologia , Celecoxib/farmacologia , Nociceptores , Fator de Necrose Tumoral alfa , Interleucina-6 , Bradicinina/farmacologia , Cálcio/farmacologia , Interleucina-8/farmacologia , Células Cultivadas , Gânglios Espinais
3.
Eur Spine J ; 30(4): 1018-1027, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423134

RESUMO

PURPOSE: Lumbar Modic change (MC) can serve as a diagnostic marker as well as an independent source of chronic low back pain (CLBP). This study aimed to test for the existence of serum biomarkers in CLBP patients with MC. METHODS: Age- and sex-matched CLBP patients with confirmed MC on lumbar MRI (n = 40) and pain-free controls (n = 40) were assessed. MC was classified into M1, predominating M1, predominating M2 and M2. MC volumes were calculated. Fasting blood samples were assessed for inflammatory mediators, signalling molecules, growth factors and bone turnover markers. Serum concentrations of 46 biomarkers were measured. RESULTS: Median concentrations of interleukin (IL)-15 (p < 0.001), IL-8 (p < 0.001), tumour necrosis factor (TNF)-alpha (p < 0.001), Eotaxin-1 (p < 0.05), Eotaxin-3 (p < 0.001), monocyte chemotactic protein (MCP)-1 (p < 0.05), macrophage inflammatory protein (MIP)-1alpha (p < 0.01), TEK receptor tyrosine kinase (Tie)-2 (p < 0.001), vascular cell adhesion molecule (VCAM)-1 (p < 0.001), RANTES (p < 0.001), C telopeptide of type I collagen (CTX)-1 (p < 0.001), vascular endothelial growth factor (VEGF)-C (p < 0.001), VEGF-D (p < 0.05), fms-related tyrosine kinase (Flt)-1 (p < 0.01) and intercellular adhesion molecule (ICAM)-1 (p < 0.01) were significantly higher among controls. IL-1sRII (23.2 vs. 15.5 ng/ml, p < 0.001) and hepatocyte growth factor (HGF)-1 (169 vs. 105 pg/ml, p < 0.01) concentrations were significantly higher among patients. Type or volume of MC was not associated with biomarker concentrations. CONCLUSIONS: This is the first study to assess the blood serum biomarker profile in individuals with CLBP with MC. Several biomarkers were suppressed, while two markers (IL-1sRII and HGF) were elevated among MC patients, irrespective of MC type or size, with CLBP compared with asymptomatic controls.


Assuntos
Dor Lombar , Biomarcadores , Humanos , Mediadores da Inflamação , Região Lombossacral , Fator A de Crescimento do Endotélio Vascular
4.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805356

RESUMO

Chronic low back pain (LBP) remains a challenging condition to treat, and especially to cure. If conservative treatment approaches fail, the current "gold standard" for intervertebral disc degeneration (IDD)-provoked back pain is spinal fusion. However, due to its invasive and destructive nature, the focus of orthopedic research related to the intervertebral disc (IVD) has shifted more towards cell-based therapeutic approaches. They aim to reduce or even reverse the degenerative cascade by mimicking the human body's physiological healing system. The implementation of progenitor and/or stem cells and, in particular, the delivery of mesenchymal stromal cells (MSCs) has revealed significant potential to cure the degenerated/injured IVD. Over the past decade, many research groups have invested efforts to find ways to utilize these cells as efficiently and sustainably as possible. This narrative literature review presents a summary of achievements made with the application of MSCs for the regeneration of the IVD in recent years, including their preclinical and clinical applications. Moreover, this review presents state-of-the-art strategies on how the homing capabilities of MSCs can be utilized to repair damaged or degenerated IVDs, as well as their current limitations and future perspectives.


Assuntos
Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/fisiopatologia , Transplante de Células-Tronco Mesenquimais , Regeneração , Animais , Humanos , Disco Intervertebral/lesões , Degeneração do Disco Intervertebral/fisiopatologia
5.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803999

RESUMO

The purpose of the present pilot study was to evaluate the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) as a carrier for human mesenchymal stem cells (hMSCs) for intervertebral disc (IVD) regeneration using a disc organ culture model. HA was mixed with batroxobin (BTX) and PRP to form a hydrogel encapsulating 1 × 106 or 2 × 106 hMSCs. Bovine IVDs were nucleotomized and filled with hMSCs suspended in ~200 µL of the PRP/HA/BTX hydrogel. IVDs collected at day 0 and nucleotomized IVDs with no hMSCs and/or hydrogel alone were used as controls. hMSCs encapsulated in the hydrogel were also cultured in well plates to evaluate the effect of the IVD environment on hMSCs. After 1 week, tissue structure, scaffold integration, hMSC viability and gene expression of matrix and nucleus pulposus (NP) cell markers were assessed. Histological analysis showed a better preservation of the viability of the IVD tissue adjacent to the gel in the presence of hMSCs (~70%) compared to the hydrogel without hMSCs. Furthermore, disc morphology was maintained, and the hydrogel showed signs of integration with the surrounding tissues. At the gene expression level, the hydrogel loaded with hMSCs preserved the normal metabolism of the tissue. The IVD environment promoted hMSC differentiation towards a NP cell phenotype by increasing cytokeratin-19 (KRT19) gene expression. This study demonstrated that the hydrogel composed of HA/PRP/BTX represents a valid carrier for hMSCs being able to maintain a good cell viability while stimulating cell activity and NP marker expression.


Assuntos
Ácido Hialurônico/farmacologia , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/transplante , Queratina-19/genética , Transplante de Células-Tronco Mesenquimais , Animais , Batroxobina/farmacologia , Bovinos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/citologia , Núcleo Pulposo/crescimento & desenvolvimento , Núcleo Pulposo/transplante , Técnicas de Cultura de Órgãos , Plasma Rico em Plaquetas/química
6.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575886

RESUMO

Chronic discogenic back pain is associated with increased inflammatory cytokine levels that can influence the proximal peripheral nervous system, namely the dorsal root ganglion (DRG). However, transition to chronic pain is widely thought to involve glial activation in the spinal cord. In this study, an in vitro model was used to evaluate the communication between DRG and spinal cord glia. Primary neonatal rat DRG cells were treated with/without inflammatory cytokines (TNF-α, IL-1ß, and IL-6). The conditioned media were collected at two time points (12 and 24 h) and applied to spinal cord mixed glial culture (MGC) for 24 h. Adult bovine DRG and spinal cord cell cultures were also tested, as an alternative large animal model, and results were compared with the neonatal rat findings. Compared with untreated DRG-conditioned medium, the second cytokine-treated DRG-conditioned medium (following medium change, thus containing solely DRG-derived molecules) elevated CD11b expression and calcium signal in neonatal rat microglia and enhanced Iba1 expression in adult bovine microglia. Cytokine treatment induced a DRG-mediated microgliosis. The described in vitro model allows the use of cells from large species and may represent an alternative to animal pain models (3R principles).


Assuntos
Comunicação Celular , Gânglios Espinais/fisiologia , Neuroglia/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Biomarcadores , Cálcio/metabolismo , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunofluorescência , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Ratos
7.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502517

RESUMO

Intervertebral disc (IVD) degeneration involves a complex cascade of events, including degradation of the native extracellular matrix, loss of water content, and decreased cell numbers. Cell recruitment strategies for the IVD have been increasingly explored, aiming to recruit either endogenous or transplanted cells. This study evaluates the IVD therapeutic potential of a chemoattractant delivery system (HAPSDF5) that combines a hyaluronan-based thermoreversible hydrogel (HAP) and the chemokine stromal cell derived factor-1 (SDF-1). HAPSDF5 was injected into the IVD and was combined with an intravenous injection of mesenchymal stem/stromal cells (MSCs) in a pre-clinical in vivo IVD lesion model. The local and systemic effects were evaluated two weeks after treatment. The hydrogel by itself (HAP) did not elicit any adverse effect, showing potential to be administrated by intradiscal injection. HAPSDF5 induced higher cell numbers, but no evidence of IVD regeneration was observed. MSCs systemic injection seemed to exert a role in IVD regeneration to some extent through a paracrine effect, but no synergies were observed when HAPSDF5 was combined with MSCs. Overall, this study shows that although the injection of chemoattractant hydrogels and MSC recruitment are feasible approaches for IVD, IVD regeneration using this strategy needs to be further explored before successful clinical translation.


Assuntos
Quimiocina CXCL12/uso terapêutico , Ácido Hialurônico/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Administração Intravenosa/métodos , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Quimiocina CXCL12/administração & dosagem , Fatores Quimiotáticos/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Ácido Hialurônico/administração & dosagem , Hidrogéis/uso terapêutico , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar
8.
Connect Tissue Res ; 61(3-4): 304-321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31556329

RESUMO

Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.


Assuntos
Reatores Biológicos , Degeneração do Disco Intervertebral , Disco Intervertebral , Modelos Biológicos , Regeneração , Técnicas de Cultura de Tecidos , Animais , Humanos , Disco Intervertebral/patologia , Disco Intervertebral/fisiologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia
9.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731767

RESUMO

In this study, 34 Traditional Chinese Medicine (TCM) compounds were screened for potential anabolic and anti-inflammatory properties on human osteoarthritic (OA) chondrocytes. The anabolic effects were assessed by measuring the glycosaminoglycan (GAG) relative to the DNA content using a 3D pellet culture model. The most chondrogenic compounds were tested in an inflammatory model consisting of 3 days of treatment with cytokines (IL-1ß/TNF-α) with or without supplementation of TCM compounds. The anti-inflammatory effects were assessed transcriptionally, biochemically and histologically. From the 34 compounds, Vanilic acid (VA), Epimedin A (Epi A) and C (Epi C), 2''-O-rhamnosylicariside II (2-O-rhs II), Icariin, Psoralidin (PS), Protocatechuicaldehyde (PCA), 4-Hydroxybenzoic acid (4-HBA) and 5-Hydroxymethylfurfural (5-HMF) showed the most profound anabolic effects. After induction of inflammation, pro-inflammatory and catabolic genes were upregulated, and GAG/DNA was decreased. VA, Epi C, PS, PCA, 4-HBA and 5-HMF exhibited anti-catabolic and anti-inflammatory effects and prevented the up-regulation of pro-inflammatory markers including metalloproteinases and cyclooxygenase 2. After two weeks of treatment with TCM compounds, the GAG/DNA ratio was restored compared with the negative control group. Immunohistochemistry and Safranin-O staining confirmed superior amounts of cartilaginous matrix in treated pellets. In conclusion, VA, Epi C, PS, PCA, 4-HBA and 5-HMF showed promising anabolic and anti-inflammatory effects.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1beta/uso terapêutico , Medicina Tradicional Chinesa/métodos , Fator de Necrose Tumoral alfa/uso terapêutico
10.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614494

RESUMO

We investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine (n = 4) and human degenerated NP cells (n = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14. Additionally, histology was performed. Human NP cells cultured in FBG-HA hydrogel showed an increase in collagen type II (COL2) and carbonic anhydrase XII (CA12) gene expression after 14 or 7 days of culture, respectively. GAG release into the conditioned medium increased over 14 days. Healthy bovine NP cells showed increased gene expression of ACAN from day 7 to day 14. Wild type FGF-18 up-regulated CA12 gene expression of human NP cells. Histology revealed an increase of proteoglycan deposition upon FGF-18 stimulation in bovine but not in human NP cells. The FBG-HA hydrogel had a positive modulatory effect on human degenerated NP cells. Under the tested conditions, no significant effect of FGF-18 was observed on cell proliferation or GAG synthesis in human NP cells.


Assuntos
Técnicas de Cultura de Células/métodos , Fatores de Crescimento de Fibroblastos/farmacologia , Ácido Hialurônico/química , Núcleo Pulposo/citologia , Animais , Biomimética , Anidrases Carbônicas/genética , Bovinos , Células Cultivadas , Colágeno Tipo II/metabolismo , Fatores de Crescimento de Fibroblastos/química , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/química , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Fenótipo , Regeneração
11.
J Mater Sci Mater Med ; 28(1): 6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27885573

RESUMO

Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.


Assuntos
Colágeno Tipo II/química , Colágeno/química , Degeneração do Disco Intervertebral/terapia , Nanocompostos/química , Ácido Poliglutâmico/análogos & derivados , Animais , Bovinos , Células Cultivadas , Quitosana/química , Condrócitos/citologia , DNA/química , Ácido Glutâmico/química , Glicosaminoglicanos/química , Humanos , Concentração de Íons de Hidrogênio , Disco Intervertebral/cirurgia , Luz , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Transmissão , Nanotecnologia , Ácido Poliglutâmico/química , Polímeros/química , Regeneração , Espalhamento de Radiação , Eletricidade Estática
12.
Eur Spine J ; 25(9): 2898-908, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27037921

RESUMO

PURPOSE: The aim of this study was to compare two approaches for the delivery of biomaterials to partially nucleotomised intervertebral discs in whole organ culture under loading. Such models can help to bridge the gap between in vitro and in vivo studies by assessing (1) suitability of biomaterial delivery and defect closure methods, (2) effect of mechanical loading and (3) tissue response. METHODS: Mechanical performance of bovine discs filled with a hyaluronan-based thermoreversible hydrogel delivered through the annulus fibrosus (AF) or the bony endplate (EP) was evaluated under cyclic axial loading in a bioreactor. The loading protocol was optimised to achieve physiological disc height changes in nucleotomised discs. A loading regime of 0.06 ± 0.02 MPa, 0.1 Hz, 6 h daily was applied on the nucleotomised discs. Disc height and stiffness were tracked for 5 days, followed by histological analyses. RESULTS: Creation of a defect is less demanding for AF approach, while sealing is superior with the EP approach. Dynamic compressive stiffness is reduced following nucleotomy, with no significant difference between the two approaches. Disc height loss was higher, disc height recovery was lower and region around the defect with reduced cell viability was smaller for AF-approached than EP-approached discs. CONCLUSIONS: Two alternative methods for biomaterial testing in whole organ culture under loading were developed. Such models bring insights on the ability of the biomaterial to restore the mechanical behaviour of the discs. From a clinical perspective, the cavity models can simulate treatment of nucleotomy after disc herniation in young patients, whereby the remaining nucleus pulposus is still functional and therefore at high risk of re-herniation, though the defect may differ from the clinical situation.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Bovinos , Sobrevivência Celular , Modelos Animais de Doenças , Discotomia/métodos , Ácido Hialurônico/uso terapêutico , Hidrogéis/uso terapêutico , Disco Intervertebral/patologia , Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Teste de Materiais/métodos , Técnicas de Cultura de Órgãos/métodos , Suporte de Carga/fisiologia
13.
Bioelectromagnetics ; 35(2): 116-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24203577

RESUMO

Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Condrócitos/efeitos da radiação , Campos Eletromagnéticos , Fenômenos Mecânicos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Poliuretanos/farmacologia
14.
Int Orthop ; 38(5): 1105-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24287980

RESUMO

PURPOSE: Our aim was to explore the effect of varying in vitro culture conditions on general chondrogenesis of minced cartilage (MC) fragments. METHODS: Minced, fibrin-associated, bovine articular cartilage fragments were cultured in vitro within polyurethane scaffold rings. Constructs were maintained either free swelling for two or four weeks (control), underwent direct mechanical knee-joint-specific bioreactor-induced dynamic compression and shear, or they were maintained free swelling for two weeks followed by two weeks of bioreactor stimulation. Samples were collected for glycosaminoglycan (GAG)/DNA quantification; collagen type I, collagen type II, aggrecan, cartilage oligomeric matrix protein (COMP), proteoglycan-4 (PRG-4) messenger RNA (mRNA) analysis; histology and immunohistochemistry. RESULTS: Cellular outgrowth and neomatrix formation was successfully accomplished among all groups. GAG/DNA and collagen type I mRNA were not different between groups; chondrogenic genes collagen type II, aggrecan and COMP revealed a significant downregulation among free-swelling constructs over time (week two through week four). Mechanical loading was able to maintain chondrogenic expression with significantly stronger expression at long-term time points (four weeks) in comparison with four-week control. Histology and immunohistochemistry revealed that bioreactor culture induced stronger cellular outgrowth than free-swelling constructs. However, weaker collagen type II and aggrecan expression with an increased collagen type I expression was noted among this outgrowth neotissue. CONCLUSIONS: The method of MC culture is feasible under in vitro free-swelling and dynamic loading conditions, simulating in vivo posttransplantation. Mechanical stimulation significantly provokes cellular outgrowth and long-term chondrogenic maturation at the mRNA level, whereas histology depicts immature neotissue where typical cartilage matrix is expected.


Assuntos
Cartilagem/citologia , Condrogênese , Animais , Reatores Biológicos , Bovinos , Pressão , Estresse Mecânico , Técnicas de Cultura de Tecidos
15.
Adv Sci (Weinh) ; 11(11): e2308478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38113315

RESUMO

Discogenic pain is associated with deep nerve ingrowth in annulus fibrosus tissue (AF) of intervertebral disc (IVD). To model AF nerve ingrowth, primary bovine dorsal root ganglion (DRG) micro-scale tissue units are spatially organised around an AF explant by mild hydrodynamic forces within a collagen matrix. This results in a densely packed multicellular system mimicking the native DRG tissue morphology and a controlled AF-neuron distance. Such a multicellular organisation is essential to evolve populational-level cellular functions and in vivo-like morphologies. Pro-inflammatory cytokine-primed AF demonstrates its neurotrophic and neurotropic effects on nociceptor axons. Both effects are dependent on the AF-neuron distance underpinning the role of recapitulating inter-tissue/organ anatomical proximity when investigating their crosstalk. This is the first in vitro model studying AF nerve ingrowth by engineering mature and large animal tissues in a morphologically and physiologically relevant environment. The new approach can be used to biofabricate multi-tissue/organ models for untangling pathophysiological conditions and develop novel therapies.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Bovinos , Colágeno , Neurônios , Gânglios Espinais
16.
Am J Sports Med ; 52(6): 1596-1607, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581200

RESUMO

BACKGROUND: Physiological 0.9% saline is commonly used as an irrigation fluid in modern arthroscopy. There is a growing body of evidence that a hyperosmolar saline solution has chondroprotective effects, especially if iatrogenic injury occurs. PURPOSE: To (1) corroborate the superiority of a hyperosmolar saline solution regarding chondrocyte survival after mechanical injury and (2) observe the modulatory response of articular cartilage to osmotic stress and injury. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral explants were isolated from bovine stifle joints and exposed to either 0.9% saline (308 mOsm) or hyperosmolar saline (600 mOsm) and then damaged with a sharp dermatome blade to attain a confined full-thickness cartilage injury site, incubated in the same fluids for another 3 hours, and transferred to chondropermissive medium for further culture for 1 week. Chondrocyte survival was assessed by confocal imaging, while the cellular response was evaluated over 1 week by relative gene expression for apoptotic and inflammatory markers and mediator release into the medium. RESULTS: The full-thickness cartilage cut resulted in a confined zone of cell death that mainly affected superficial zone chondrocytes. Injured samples that were exposed to hyperosmolar saline showed less expansion of cell death in both the axial (P < .007) and the coronal (P < .004) plane. There was no progression of cell death during the following week of culture. Histological assessment revealed an intact cartilage matrix and normal chondrocyte morphology. Inflammatory and proapoptotic genes were upregulated on the first days postexposure with a notable downregulation toward day 7. Mediator release into the medium was concentrated on day 3. CONCLUSION: This in vitro cartilage injury model provides further evidence for the chondroprotective effect of a hyperosmolar saline irrigation fluid, as well as novel data on the capability of articular cartilage to quickly regain joint homeostasis after osmotic stress and injury. CLINICAL RELEVANCE: Raising the osmolarity of an irrigating solution may be a simple and safe strategy to protect articular cartilage during arthroscopic surgery.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/lesões , Bovinos , Condrócitos/efeitos dos fármacos , Pressão Osmótica , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Irrigação Terapêutica , Solução Salina
17.
Sci Rep ; 14(1): 11991, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796487

RESUMO

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Assuntos
Alginatos , Reatores Biológicos , Condrogênese , Hidrogéis , Células-Tronco Mesenquimais , Microesferas , Engenharia Tecidual , Alginatos/química , Engenharia Tecidual/métodos , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Cartilagem/citologia , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
18.
Methods Mol Biol ; 2598: 325-336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355302

RESUMO

Osteochondral explants harvested from different species are valuable preclinical ex vivo models for tissue engineering research. In this chapter, we describe the isolation of osteochondral plugs from bovine stifle joints, followed by defect creation, and plug preparation in a straightforward manner before mechanical loading using a compression and shear bioreactor. The method can be adapted to isolate osteochondral plugs from any animal species and to load explants in any type of bioreactor.


Assuntos
Cartilagem Articular , Bovinos , Animais , Articulação do Joelho , Engenharia Tecidual/métodos , Reatores Biológicos , Condrócitos
19.
JOR Spine ; 6(4): e1280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156062

RESUMO

Biomarkers are commonly recognized as objective indicators of a medical state or clinical outcome and have been widely used as clinical and diagnostic tools and surrogate endpoints in many pathological conditions. In the context of intervertebral disc (IVD) and associated back pain, also known as degenerative disc disease (DDD), the use of biomarkers has been poorly explored. DDD is currently diagnosed using imaging techniques and subjective pain scales, limiting an objective association between DDD and pain levels, as well as an evaluation of disease progression. There is a need for objective and reliable measurements for DDD, pain and pathology progression. DDD predictors could also help clinicians in deciding on the optimal treatment for distinct patient groups. This review addresses the current candidate biomarkers in DDD, including imaging, genetic, metabolite and protein-based parameters, both at the tissue and systemic levels, that may become a major advance in the diagnosis and prognosis of the disease, as well as in the management of therapeutic approaches to DDD.

20.
J Orthop Translat ; 38: 106-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36381242

RESUMO

Background: Osteoarthritis (OA) is the most common degenerative joint disease, mainly affecting the elderly worldwide, for which the drug treatment remains a major challenge. Low-grade inflammation plays a pivotal role in OA onset and progression. Exploration of notable anti-inflammatory and disease-modifying drugs on human samples could facilitate the evaluation of therapeutic strategies for OA. Methods: The anti-inflammatory drug 5-aminosalicylic acid (5-ASA) is a first-line drug for ulcerative colitis (UC), however no study has explored the effects of 5-ASA on articular chondrocytes. In this work, both in vitro (chondrocyte pellets) and ex vivo (osteochondral explants) human inflammatory OA models were applied to evaluate the effects of 5-ASA. Results: In the inflammatory pellet model, 5-ASA remarkably downregulated the gene expression of interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) while upregulating proteoglycan 4 (PRG4) and cartilage oligomeric matrix protein (COMP) gene expression. Total glycosaminoglycan (GAG) synthesis by pellets was markedly increased in 5-ASA-treated groups compared with the inflammatory group. In conditioned medium, inflammatory mediators (IL-8, nitric oxide) were markedly inhibited upon 5-ASA treatment. Moreover, histological staining showed 5-ASA retained proteoglycan content and inhibited degradation of extracellular matrix (ECM) core components, aggrecan (ACAN) and collagen type II (COL2). In the inflammatory explant model, 5-ASA mitigated signs of OA development by reducing inflammatory mediators and GAG loss. Conclusions: These findings suggest that 5-ASA has anti-inflammatory and pro-anabolic effects on human chondrocyte pellet and osteochondral explant inflammatory OA models. The translational potential of this article: Disease-modifying OA drugs are an unmet clinical need for the treatment of OA. Our study explored and demonstrated the anti-inflammatory and protective effects of 5-ASA on in vitro and ex vivo human inflammatory OA models, showing its translational potential for OA treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA