Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Pain ; 16: 1744806920971914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241748

RESUMO

Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Regulação da Expressão Gênica no Desenvolvimento , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Neuralgia/genética , Animais , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais/genética
3.
Eur J Neurosci ; 46(7): 2285-2296, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28858406

RESUMO

Altered motivated behaviour is a cardinal feature of several neuropsychiatric conditions including mood disorders. One well-characterized antecedent to the development of mood disorders is exposure to early life stress (ELS). A key brain substrate controlling motivated behaviour is the lateral hypothalamus (LH). Here, we examined the effect of ELS on LH activation and the motivation to self-administer sucrose. We tested whether chemogenetic activation of LH circuits could modify sucrose responding in ELS rats and examined the impact on LH cell populations. Male rat pups were maternally separated for 0 or 3 h on postnatal days 2-14. During adolescence, rats received bilateral injections of hM3D(Gq), the excitatory designer receptor exclusively activated by designer drugs, into LH. In adulthood, rats were trained to self-administer sucrose and tested under a progressive ratio schedule to determine their motivation for reward following injection with either vehicle or 5 mg/kg clozapine-N-oxide. Brains were processed for Fos-protein immunohistochemistry. ELS significantly suppressed lever responding for sucrose, indicating a long-lasting impact of ELS on motivation circuits. hM3D(Gq) activation of LH increased responding, normalizing deficits in ELS rats, and increased Fos-positive orexin and MCH cell numbers within LH. Our findings indicate that despite being susceptible to environmental stressors, LH circuits retain the capacity to overcome ELS-induced deficits in motivated behaviour.


Assuntos
Hipotálamo/metabolismo , Motivação , Estresse Psicológico/tratamento farmacológico , Animais , Drogas Desenhadas/administração & dosagem , Drogas Desenhadas/uso terapêutico , Feminino , Humanos , Hipotálamo/citologia , Hipotálamo/fisiopatologia , Masculino , Neurônios/metabolismo , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Ratos , Ratos Wistar , Receptores Muscarínicos/administração & dosagem , Receptores Muscarínicos/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Estresse Psicológico/fisiopatologia , Tempo
4.
Mol Pain ; 11: 17, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25889748

RESUMO

BACKGROUND: Superficial dorsal horn (SDH) neurons process nociceptive information and their excitability is partly determined by the properties of voltage-gated sodium channels. Recently, we showed the excitability and action potential properties of mouse SDH neurons change markedly during early postnatal development. Here we compare sodium currents generated in neonate (P0-5) and young adult (≥P21) SDH neurons. RESULTS: Whole cell recordings were obtained from lumbar SDH neurons in transverse spinal cord slices (CsF internal, 32°C). Fast activating and inactivating TTX-sensitive inward currents were evoked by depolarization from a holding potential of -100 mV. Poorly clamped currents, based on a deflection in the IV relationship at potentials between -60 and -50 mV, were not accepted for analysis. Current density and decay time increased significantly between the first and third weeks of postnatal development, whereas time to peak was similar at both ages. This was accompanied by more subtle changes in activation range and steady state inactivation. Recovery from inactivation was slower and TTX-sensitivity was reduced in young adult neurons. CONCLUSIONS: Our study suggests sodium channel expression changes markedly during early postnatal development in mouse SDH neurons. The methods employed in this study can now be applied to future investigations of spinal cord sodium channel plasticity in murine pain models.


Assuntos
Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Células do Corno Posterior/metabolismo , Sódio/metabolismo , Envelhecimento , Animais , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp/métodos , Medula Espinal/metabolismo
5.
Mol Pain ; 10: 25, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725960

RESUMO

BACKGROUND: Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons. RESULTS: Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2 g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40 µl of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2 hrs. Mice in each group were sacrificed at 2 hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63 ± 1.05 vs. 24.64 ± 0.91 and 25.87 ± 1.32 pA, respectively). The amplitude (238 ± 33 vs. 494 ± 96 and 593 ± 167 pA) and inactivation time constant (12.9 ± 1.5 vs. 22.1 ± 3.6 and 15.3 ± 1.4 ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice. CONCLUSIONS: Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are reduced two hours after acute muscle inflammation. We propose this time point represents an important transition period between peripheral and central sensitisation with reduced excitatory drive providing an initial neuroprotective mechanism during the early stages of the progression towards central sensitisation.


Assuntos
Lateralidade Funcional/fisiologia , Gânglios Espinais/patologia , Miosite/complicações , Músculos do Pescoço/patologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Carragenina/toxicidade , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Lateralidade Funcional/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miosite/induzido quimicamente , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/efeitos dos fármacos
6.
Transl Psychiatry ; 14(1): 8, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191479

RESUMO

Impaired motivational drive is a key feature of depression. Chronic stress is a known antecedent to the development of depression in humans and depressive-like states in animals. Whilst there is a clear relationship between stress and motivational drive, the mechanisms underpinning this association remain unclear. One hypothesis is that the endocrine system, via corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN; PVNCRH), initiates a hormonal cascade resulting in glucocorticoid release, and that excessive glucocorticoids change brain circuit function to produce depression-related symptoms. Another mostly unexplored hypothesis is that the direct activity of PVNCRH neurons and their input to other stress- and reward-related brain regions drives these behaviors. To further understand the direct involvement of PVNCRH neurons in motivation, we used optogenetic stimulation to activate these neurons 1 h/day for 5 consecutive days and showed increased acute stress-related behaviors and long-lasting deficits in the motivational drive for sucrose. This was associated with increased Fos-protein expression in the lateral hypothalamus (LH). Direct stimulation of the PVNCRH inputs in the LH produced a similar pattern of effects on sucrose motivation. Together, these data suggest that PVNCRH neuronal activity may be directly responsible for changes in motivational drive and that these behavioral changes may, in part, be driven by PVNCRH synaptic projections to the LH.


Assuntos
Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina , Animais , Humanos , Motivação , Hormônios Liberadores de Hormônios Hipofisários , Optogenética , Hipotálamo , Glucocorticoides , Neurônios , Sacarose
7.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333120

RESUMO

Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.

8.
Sci Rep ; 13(1): 11561, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464016

RESUMO

Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.


Assuntos
Nociceptores , Medula Espinal , Animais , Camundongos , Calbindina 2 , Células do Corno Posterior , Medula Espinal/fisiologia , Sinapses
9.
J Physiol ; 590(16): 3677-89, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22641785

RESUMO

The hypothalamus is a critical controller of homeostatic responses and plays a fundamental role in reward-seeking behaviour. Recently, hypothalamic neurones in the perifornical/lateral hypothalamic area (PF/LHA) have also been implicated in drug-seeking behaviour through projections to extra-hypothalamic sites such as the ventral tegmental area. For example, a population of neurones that expresses the peptide orexin has been strongly implicated in addiction-relevant behaviours. To date, the effect of addictive drugs on synaptic properties in the hypothalamus remains largely unexplored. Previous studies focusing on the PF/LHA neurones, however, have shown that the orexin system exhibits significant plasticity in response to food or sleep restriction. This neuroadaptive ability suggests that PF/LHA neurones could be highly susceptible to modifications by drug exposure. Here, we sought to determine whether cocaine produces synaptic plasticity in PF/LHA neurones. Whole-cell patch-clamp techniques were used to examine the effects of experimenter-administered (passive) or self-administered (SA) cocaine on glutamatergic synaptic transmission in PF/LHA neurones. These experiments demonstrate that both passive and SA cocaine exposure increases miniature excitatory postsynaptic current (mEPSC) frequency in PF/LHA neurones. In addition, SA cocaine reduced the paired-pulse ratio but the AMPA/NMDA ratio of evoked excitatory inputs was unchanged, indicative of a presynaptic locus for synaptic plasticity. Dual-labelling for orexin and excitatory inputs using the vesicular glutamate transporter (VGLUT2), showed that passive cocaine exposure increased VGLUT2-positive appositions onto orexin neurones. Further, a population of recorded neurones that were filled with neurobiotin and immunolabelled for orexin confirmed that increased excitatory drive occurs in this PF/LHA population. Given the importance of the PF/LHA and the orexin system in modulating drug addiction, we suggest that these cocaine-induced excitatory synapse-remodelling events within the hypothalamus may contribute to persistence in drug-seeking behaviour and relapse.


Assuntos
Cocaína/toxicidade , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , N-Metilaspartato/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Ratos , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
10.
Front Neural Circuits ; 16: 834173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874431

RESUMO

The incidence of pain symptoms such as allodynia are known to increase with age. Parvalbumin expressing interneurons (PVINs) within the dorsal horn (DH) of the spinal cord play an important role in allodynia whereby their inhibitory connections prevent innocuous touch information from exciting nociceptive pathways. Here we ask whether the functional properties of PVINs are altered by aging, comparing their functional properties in adult (3-7 month) and aged mice (23-28 month). Patch clamp recordings were made from PVINs in laminae IIi-III of parasagittal spinal cord slices. The intrinsic excitability of PVINs changed with age. Specifically, AP discharge shifted from initial bursting to tonic firing, and firing duration during current injection increased. The nature of excitatory synaptic input to PVINs also changed with age with larger but less frequent spontaneous excitatory currents occurring in aged mice, however, the net effect of these differences produced a similar level of overall excitatory drive. Inhibitory drive was also remarkably similar in adult and aged PVINs. Photostimulation of ChR2 expressing PVINs was used to study inhibitory connections between PVINs and unidentified DH neurons and other PVINs. Based on latency and jitter, monosynaptic PVIN to unidentified-cell and PVIN-PVIN connections were compared in adult and aged mice, showing that PVIN to unidentified-cell connection strength increased with age. Fitting single or double exponentials to the decay phase of IPSCs showed there was also a shift from mixed (glycinergic and GABAergic) to GABAergic inhibitory transmission in aged animals. Overall, our data suggest the properties of PVIN neurons in aged animals enhance their output in spinal circuits in a manner that would blunt allodynia and help maintain normal sensory experience during aging.


Assuntos
Hiperalgesia , Parvalbuminas , Animais , Hiperalgesia/metabolismo , Interneurônios/fisiologia , Camundongos , Parvalbuminas/metabolismo , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal
11.
J Vis Exp ; (180)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225253

RESUMO

The roles and connectivity of specific types of neurons within the spinal cord dorsal horn (DH) are being delineated at a rapid rate to provide an increasingly detailed view of the circuits underpinning spinal pain processing. However, the effects of these connections for broader network activity in the DH remain less well understood because most studies focus on the activity of single neurons and small microcircuits. Alternatively, the use of microelectrode arrays (MEAs), which can monitor electrical activity across many cells, provides high spatial and temporal resolution of neural activity. Here, the use of MEAs with mouse spinal cord slices to study DH activity induced by chemically stimulating DH circuits with 4-aminopyridine (4-AP) is described. The resulting rhythmic activity is restricted to the superficial DH, stable over time, blocked by tetrodotoxin, and can be investigated in different slice orientations. Together, this preparation provides a platform to investigate DH circuit activity in tissue from naïve animals, animal models of chronic pain, and mice with genetically altered nociceptive function. Furthermore, MEA recordings in 4-AP-stimulated spinal cord slices can be used as a rapid screening tool to assess the capacity of novel antinociceptive compounds to disrupt activity in the spinal cord DH.


Assuntos
Nociceptividade , Corno Dorsal da Medula Espinal , 4-Aminopiridina , Animais , Camundongos , Microeletrodos , Neurônios , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal/fisiologia
12.
Pain ; 163(3): e432-e452, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34326298

RESUMO

ABSTRACT: Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.


Assuntos
Parvalbuminas , Células do Corno Posterior , Interneurônios , Mecanorreceptores , Células do Corno Posterior/fisiologia , Corno Dorsal da Medula Espinal
13.
Pain ; 162(7): 1977-1994, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779126

RESUMO

ABSTRACT: Projection neurons in the spinal dorsal horn relay sensory information to higher brain centres. The activation of these populations is shaped by afferent input from the periphery, descending input from the brain, and input from local interneuron circuits. Much of our recent understanding of dorsal horn circuitry comes from studies in transgenic mice; however, information on projection neurons is still based largely on studies in monkey, cat, and rat. We used viral labelling to identify and record from mouse parabrachial nucleus (PBN) projecting neurons located in the dorsal horn of spinal cord slices. Overall, mouse lamina I spinoparabrachial projection neurons (SPBNs) exhibit many electrophysiological and morphological features that overlap with rat. Unbiased cluster analysis distinguished 4 distinct subpopulations of lamina I SPBNs, based on their electrophysiological properties that may underlie different sensory signalling features in each group. We also provide novel information on SPBNs in the deeper lamina (III-V), which have not been previously studied by patch clamp analysis. These neurons exhibited higher action potential discharge frequencies and received weaker excitatory synaptic input than lamina I SPBNs, suggesting this deeper population produces different sensory codes destined for the PBN. Mouse SPBNs from both regions (laminae I and III-V) were often seen to give off local axon collaterals, and we provide neuroanatomical evidence they contribute to excitatory input to dorsal horn circuits. These data provide novel information to implicate excitatory input from parabrachial projection neuron in dorsal horn circuit activity during processing of nociceptive information, as well as defining deep dorsal horn projection neurons that provide an alternative route by which sensory information can reach the PBN.


Assuntos
Interneurônios , Corno Dorsal da Medula Espinal , Potenciais de Ação , Animais , Gatos , Camundongos , Neurônios , Células do Corno Posterior , Ratos , Medula Espinal
14.
J Sex Med ; 7(6): 2068-2076, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20345730

RESUMO

INTRODUCTION: Sensory input from the female reproductive tract (FRT) plays a pivotal role in coordinating reproductive reflexes. Additionally, a number of disorders, especially chronic pelvic pain, may be due to disturbances in sensory processing of signals from the FRT. AIMS: Our aim was to record synaptic responses in neurons from lumbar and sacral spinal cord segments during mechanical stimulation of the cervix. METHODS: We developed an in vivo preparation of the mouse spinal cord to record synaptic potentials from superficial dorsal horn (SDH) neurons under whole-cell patch clamp recording conditions. MAIN OUTCOME MEASURES: We analyzed the strength and distribution of excitatory postsynaptic potentials in SDH neurons evoked during mechanical stimulation of the cervix and cutaneous sites. RESULTS: Resting membrane potential and neuronal input resistance was similar in thoracolumbar (TL, T13-L3) and lumbosacral (LS, L6-S2) segments. We elicited activity in 6/21 TL neurons and 15/39 LS neurons using mechanical stimulation of the cervix with a blunt probe. The majority of these neurons responded to cervix stimulation with bursts of subthreshold excitatory postsynaptic potentials (4/6 and 12/15 TL and LS neurons, respectively). The remainder responded with sufficient magnitude to generate action potentials (2/6 and 3/15 TL and LS neurons). Cutaneous synaptic inputs were also elicited in 11/21 TL neurons following stimulation of the flank/leg, 19/39 LS neurons by stimulation of the tail, and three LS neurons by perineal stimulation. Some neurons received convergent synaptic inputs from the cervix and cutaneous sites (4/6 TL and 4/15 LS). CONCLUSION: These data demonstrate that spinal projections of cervix afferents are widely dispersed in the SDH and considerable convergence exists between neurons innervating the cervix and cutaneous structures. Our results indicate that much of the synaptic activity evoked in SDH neurons following cervix stimulation is subthreshold.


Assuntos
Colo do Útero/inervação , Células do Corno Posterior/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Animais , Feminino , Membro Posterior/inervação , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Períneo/inervação , Estimulação Física , Limiar Sensorial/fisiologia , Pele/inervação , Medula Espinal/fisiologia , Cauda/inervação
15.
Brain Res ; 1734: 146540, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704081

RESUMO

This article reviews the contributions of the English neurophysiologist, Charles Scott Sherrington [1857-1952], and his Australian PhD trainee and collaborator, John Carew Eccles [1903-1997], to the concept of central inhibition in the spinal cord and brain. Both were awarded Nobel Prizes; Sherrington in 1932 for "discoveries regarding the function of neurons," and Eccles in 1963 for "discoveries concerning the ionic mechanisms involved in excitation and inhibition in central portions of the nerve cell membrane." Both spoke about central inhibition at their Nobel Prize Award Ceremonies. The subsequent publications of their talks were entitled "Inhibition as a coordinative factor" and "The ionic mechanism of postsynaptic inhibition", respectively. Sherrington's work on central inhibition spanned 41 years (1893-1934), and for Eccles 49 years (1928-1977). Sherrington first studied central inhibition by observing hind limb muscle responses to electrical (peripheral nerve) and mechanical (muscle) stimulation. He used muscle length and force measurements until the early 1900s and electromyography in the late 1920s. Eccles used these techniques while working with Sherrington, but later employed extracellular microelectrode recording in the spinal cord followed in 1951 by intracellular recording from spinal motoneurons. This considerably advanced our understanding of central inhibition. Sherrington's health was poor during his retirement years but he nonetheless made a small number of largely humanities contributions up to 1951, one year before his death at the age of 94. In contrast, Eccles retained his health and vigor until 3 years before his death and published prolifically on many subjects during his 22 years of official retirement. His last neuroscience article appeared in 1994 when he was 91. Despite poor health he continued thinking about his life-long interest, the mind-brain problem, and was attempting to complete his autobiography in the last years of his life.


Assuntos
Pessoal de Laboratório/história , Inibição Neural , Neurofisiologia/história , Medula Espinal , História do Século XIX , História do Século XX , Humanos , Masculino , Inibição Neural/fisiologia , Medula Espinal/fisiologia
16.
Front Physiol ; 11: 560802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408637

RESUMO

The pain experience depends on the relay of nociceptive signals from the spinal cord dorsal horn to higher brain centers. This function is ultimately achieved by the output of a small population of highly specialized neurons called projection neurons (PNs). Like output neurons in other central nervous system (CNS) regions, PNs are invested with a substantial axon collateral system that ramifies extensively within local circuits. These axon collaterals are widely distributed within and between spinal cord segments. Anatomical data on PN axon collaterals have existed since the time of Cajal, however, their function in spinal pain signaling remains unclear and is absent from current models of spinal pain processing. Despite these omissions, some insight on the potential role of PN axon collaterals can be drawn from axon collateral systems of principal or output neurons in other CNS regions, such as the hippocampus, amygdala, olfactory cortex, and ventral horn of the spinal cord. The connectivity and actions of axon collaterals in these systems have been well-defined and used to confirm crucial roles in memory, fear, olfaction, and movement control, respectively. We review this information here and propose a framework for characterizing PN axon collateral function in the dorsal horn. We highlight that experimental approaches traditionally used to delineate axon collateral function in other CNS regions are not easily applied to PNs because of their scarcity relative to spinal interneurons (INs), and the lack of cellular organization in the dorsal horn. Finally, we emphasize how the rapid development of techniques such as viral expression of optogenetic or chemogenetic probes can overcome these challenges and allow characterization of PN axon collateral function. Obtaining detailed information of this type is a necessary first step for incorporation of PN collateral system function into models of spinal sensory processing.

17.
Front Mol Neurosci ; 13: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477061

RESUMO

Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP-) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP- population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP- neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP- cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population.

18.
Front Mol Neurosci ; 13: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362812

RESUMO

The superficial dorsal horn (SDH, LI-II) of the spinal cord receives and processes multimodal sensory information from skin, muscle, joints, and viscera then relay it to the brain. Neurons within the SDH fall into two broad categories, projection neurons and interneurons. The later can be further subdivided into excitatory and inhibitory types. Traditionally, interneurons within the SDH have been divided into overlapping groups according to their neurochemical, morphological and electrophysiological properties. Recent clustering analyses, based on molecular transcript profiles of cells and nuclei, have predicted many more functional groups of interneurons than expected using traditional approaches. In this study, we used electrophysiological and morphological data obtained from genetically-identified excitatory (vGLUT2) and inhibitory (vGAT) interneurons in transgenic mice to cluster cells into groups sharing common characteristics and subsequently determined how many clusters can be assigned by combinations of these properties. Consistent with previous reports, we show differences exist between excitatory and inhibitory interneurons in terms of their excitability, nature of the ongoing excitatory drive, action potential (AP) properties, sub-threshold current kinetics, and morphology. The resulting clusters based on statistical and unbiased assortment of these data fell well short of the numbers of molecularly predicted clusters. There was no clear characteristic that in isolation defined a population, rather multiple variables were needed to predict cluster membership. Importantly though, our analysis highlighted the appropriateness of using transgenic lines as tools to functionally subdivide both excitatory and inhibitory interneuron populations.

19.
Mol Pain ; 5: 65, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19919721

RESUMO

BACKGROUND: Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. METHODS AND RESULTS: Here we compare fast inhibitory synaptic transmission in mouse (P17-37) SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23 degrees C). GlyR-mediated mIPSCs were detected in 74% (25/34) and 94% (25/27) of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18). Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 +/- 3.9 vs. 64.7 +/- 5.0 pA; n = 25 each), decay time was slower (8.5 +/- 0.8 vs. 5.5 +/- 0.3 ms), and frequency was lower (0.15 +/- 0.03 vs. 0.72 +/- 0.13 Hz) in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 +/- 2.4, n = 14 vs. 25. +/- 2.0 pA, n = 18) and frequencies (0.21 +/- 0.08 vs. 0.18 +/- 0.04 Hz) in both regions; however, decay times were slower (23.0 +/- 3.2 vs. 18.9 +/- 1.8 ms) in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 +/- 1.6 pS, n = 11 vs. 55.7 +/- 1.8, n = 8) and GABAARs (22.7 +/- 1.7 pS, n = 10 vs. 22.4 +/- 2.0 pS, n = 11) in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA), had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 muM) reduced GlyR-mediated mIPSC frequency in SDH and DDH, but did not affect other properties. Similar results were observed for GABAAR mediated mIPSCs, however, rise time was slowed by methAEA in SDH neurons. CONCLUSION: Together these data show that Gly- and GABAARs with clearly differing physiological properties and cannabinoid-sensitivity contribute to fast synaptic inhibition in mouse SDH and DDH.


Assuntos
Células do Corno Posterior/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Canabinoides/farmacologia , Eletrofisiologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Células do Corno Posterior/efeitos dos fármacos , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
20.
Neuropharmacology ; 154: 22-33, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30253175

RESUMO

The perifornical/lateral hypothalamic area (LHA) orexin (hypocretin) system is involved in drug-seeking behavior elicited by drug-associated stimuli. Cocaine exposure is associated with presynaptic plasticity at LHA orexin cells such that excitatory input to orexin cells is enhanced acutely and into withdrawal. These changes may augment orexin cell reactivity to drug-related cues during abstinence and contribute to relapse-like behavior. Studies in hypothalamic slices from drug-naïve animals indicate that agonism of group III metabotropic glutamate receptors (mGluRs) reduces presynaptic glutamate release onto orexin cells. Therefore, we examined the group III mGluR system as a potential target to reduce orexin cell excitability in-vivo, including in animals with cocaine experience. First, we verified that group III mGluRs regulate orexin cell activity in behaving animals by showing that intra-LHA infusions of the selective agonist L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) reduces c-fos expression in orexin cells following 24 h food deprivation. Next, we extended these findings to show that intra-LHA L-AP4 infusions reduced discriminative stimulus-driven cocaine-seeking following withdrawal. Importantly, L-AP4 had no effect on lever pressing for sucrose pellets or general motoric behavior. Finally, using whole-cell patch-clamp recordings from identified orexin cells in orexin-GFP transgenic mice, we show enhanced presynaptic drive to orexin cells following 14d withdrawal and that this plasticity can be normalized by L-AP4. Together, these data indicate that activation of group III mGluRs in LHA reduces orexin cell activity in vivo and may be an effective strategy to suppress cocaine-seeking behavior following withdrawal. These effects are likely mediated, at least in part, by normalization of presynaptic plasticity at orexin cells that occurs as a result of cocaine exposure. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.


Assuntos
Comportamento Aditivo/metabolismo , Cocaína/administração & dosagem , Região Hipotalâmica Lateral/metabolismo , Orexinas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Comportamento Aditivo/prevenção & controle , Região Hipotalâmica Lateral/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções , Propionatos/administração & dosagem , Ratos , Receptores de Glutamato Metabotrópico/agonistas , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA