Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 44(1): 74-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862191

RESUMO

The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.


Assuntos
Parede Celular/metabolismo , Plantas/metabolismo , Xilanos/metabolismo , Metabolismo dos Carboidratos , Celulose/química , Celulose/metabolismo , Filogenia
2.
Plant J ; 79(3): 492-506, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889696

RESUMO

The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of ß-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Xilanos/metabolismo , Acetilação
3.
Nat Plants ; 3(11): 859-865, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28993612

RESUMO

Xylan and cellulose are abundant polysaccharides in vascular plants and essential for secondary cell wall strength. Acetate or glucuronic acid decorations are exclusively found on even-numbered residues in most of the glucuronoxylan polymer. It has been proposed that this even-specific positioning of the decorations might permit docking of xylan onto the hydrophilic face of a cellulose microfibril 1-3 . Consequently, xylan adopts a flattened ribbon-like twofold screw conformation when bound to cellulose in the cell wall 4 . Here we show that ESKIMO1/XOAT1/TBL29, a xylan-specific O-acetyltransferase, is necessary for generation of the even pattern of acetyl esters on xylan in Arabidopsis. The reduced acetylation in the esk1 mutant deregulates the position-specific activity of the xylan glucuronosyltransferase GUX1, and so the even pattern of glucuronic acid on the xylan is lost. Solid-state NMR of intact cell walls shows that, without the even-patterned xylan decorations, xylan does not interact normally with cellulose fibrils. We conclude that the even pattern of xylan substitutions seen across vascular plants enables the interaction of xylan with hydrophilic faces of cellulose fibrils, and is essential for development of normal plant secondary cell walls.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Células Vegetais/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Espectrometria de Massas , Proteínas de Membrana
4.
PLoS One ; 9(5): e96497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24840644

RESUMO

Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼ 24 nM for transactivation of the anti-inflammatory GILZ gene and ∼ 4-20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.


Assuntos
Anticoncepcionais/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Acetato de Medroxiprogesterona/farmacologia , Noretindrona/análogos & derivados , Progesterona/farmacologia , Receptores de Glucocorticoides/metabolismo , Células Cultivadas , Colo do Útero/citologia , Células Epiteliais/imunologia , Feminino , Células HeLa , Humanos , Injeções , Acetato de Medroxiprogesterona/administração & dosagem , Noretindrona/administração & dosagem , Noretindrona/farmacologia , Acetato de Noretindrona , Progesterona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA