Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(35): 14243-14251, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37608779

RESUMO

The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Molibdênio/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia
2.
Sci Technol Adv Mater ; 23(1): 535-546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238440

RESUMO

Micro- and nanopatterning of metal oxide materials is an important process to develop electronic or optoelectronic devices. ZnO is a material of choice for its semiconducting and photoluminescence properties. In the frame of the nanoarchitectonics concept, we have developed and investigated a new process that relies on direct writing laser patterning in the Deep-UV (DUV) range to prepare photoluminescent microstructures of ZnO at room temperature, under air. This process is based on a synthesis of colloidal ZnO nanocrystals (NCs) with a careful choice of the ligands on the surface to obtain an optimal (i) stability of the colloids, (ii) redissolution of the non-insolated parts and (iii) cross-linking of the DUV-insolated parts. The mechanisms of photocrosslinking are studied by different spectroscopic methods. This room temperature process preserves the photoluminescence properties of the NCs and the wavelength used in DUV allows to reach a sub-micrometer resolution, which opens new perspectives for the integration of microstructures on flexible substrates for optoelectronic applications.

3.
Sci Technol Adv Mater ; 23(1): 547-578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212682

RESUMO

This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.

4.
Sci Technol Adv Mater ; 23(1): 446-456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081837

RESUMO

The development of highly ultraviolet (UV) and near-infrared (NIR) absorbent transparent coatings is an important enabling technology and area of research for environmental sustainability and energy conservation. Different amounts of K4[{Nb5TaXi 12}Xa 6] cluster compounds (X = Cl, Br) dispersed into polyvinylpyrrolidone matrices were prepared by a simple, nontoxic and low-cost wet chemical method. The resulting solutions were used to fabricate visibly transparent, highly UV and NIR absorbent coatings by drop casting. The properties of the solution and films were investigated by complementary techniques (optical absorption, electrospray ionization mass spectrometry and Raman spectroscopy). The UV and NIR absorption of such samples strongly depended on the concentration, dispersion and oxidation state of the [{Nb5TaXi 12}Xa 6] nanocluster-based units. By varying and controlling these parameters, a remarkable improvement of the figures of merit TL/TE and SNIR for solar-glazing applications was achieved compared to the previous results on nanocomposite coatings based on metal atom clusters.

5.
Sci Technol Adv Mater ; 22(1): 758-771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566493

RESUMO

A novel heterogeneous catalytic nanomaterial based on a molybdenum cluster-based halide (MC) and a single-layered copper hydroxynitrate (CHN) was first prepared by colloidal processing under ambient conditions. The results of the elemental composition and crystalline pattern indicated that CHN was comprehensively synthesized with the support of the MC compound. The absorbing characteristic in the ultraviolet and near-infrared regions was promoted by both of the ingredients. The proper chemical interaction between the materials is a crucial reason to modify the structure of the MCs and only a small decrease in the magnetic susceptibility of CHN. The heterogeneous catalytic activity of the obtained MC@CHN material was found to have a high efficiency and excellent reuse when it is activated by hydrogen peroxide (H2O2) for the degrading reaction of the organic pollutant at room temperature. A reasonable catalytic mechanism was proposed to explain the distinct role of the copper compound, Mo6 compound, and H2O2 in the production of the radical hydroxyl ion. This novel nanomaterial will be an environmentally promising candidate for dye removal.

7.
Phys Chem Chem Phys ; 20(4): 2761-2770, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29322126

RESUMO

Hollow nanocapsules (named Hybridosomes®) possessing a polymer/nanoparticle shell were used to covalently construct hybrid films in a one-pot fashion. The alkyne bearing organic/inorganic Hybridosomes® were reticulated with azide bearing homobifunctional polyethyleneglycol (PEG) linkers, by using an electro-click reaction on F-SnO2 (FTO) electrodes. The coatings were obtained by promoting the Cu(i)-catalyzed click reaction between alkyne and azide moieties in the vicinity of the electrode by the electrochemical generation of Cu(i) ions. The physicochemical properties of the covalently reticulated hybrid films obtained were studied by SEM, AFM, UV-vis and fluorescence spectroscopy. The one-pot covalent click reaction between the nanocapsules and the PEG linkers in the film did not affect the desirable features of the Hybridosomes® i.e. their hollow nanostructure their chemical versatility and their pH-sensitivity. Consequently, both the composition and the cargo-loading of the Hybridosomes® films could be tuned, demonstrating the versatility of these hybrid coatings. For example, the Hybridosome® films were used to encapsulate and release a bodipy fluorescent probe in response to either a pH drop or the application of an oxidative +1 V potential (vs. Ag/AgCl) at the substrate. By advancing the field of electro-synthesized films a step further toward the design of complex physicochemical interfaces, these results open perspectives for multifunctional coatings where chemical versatility, controllable stability and a hollow nanostructure are required.

8.
J Nanosci Nanotechnol ; 18(5): 3148-3157, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442814

RESUMO

CONTEXT: as a kind of non-metal oxide SiO2 NPs have been extensively used in biomedicine, pharmaceuticals and other industrial manufacturing fields, such as DNA delivery, cancer therapy… Our group had developed a method based on microemulsion process to prepare SiO2 NPs incorporating photonic or magnetic nanocrystals and luminescent nanosized inorganic metal atom clusters. However, the toxicity of nanoparticles is known to be closely related to their physico-chemical characteristics and chemical composition. OBJECT: it is therefore of interest to investigate the toxicity of these novel SiO2 NPs to the cells that may come in contact. MATERIALS AND METHODS: the potential toxic effect of the functional @SiO2 NPs containing Mo6 clusters with or without gold nanoparticles was investigated, at concentrations 1 µg/mL, 10 µg/mL and 100 µg/mL each, on three different cell lines. Cell viability was measured by the MTT test in monolayer's culture whereas the cytotoxicity in spheroid model was examined by the APH assay. In a second time, oxidative-stress-induced cytotoxicity was investigated through glutathione levels dosages. RESULTS: the results indicated that both A549 and L929 cell lines did not exhibit susceptibility to functional @SiO2 NPs-induced oxidative stress unlike KB cells. DISCUSSION: SiO2 NPs containing CMB may become toxic to cultured cells but only at a very high dosage level. Therefore, this toxicity depends on cell lines and more, on the model of cell cultures. The selection of appropriate cell line remains a critical component in nanotoxicology. CONCLUSION: these results are relevant to future applications of SiO2 gold-cluster NPs in controlled release applications.


Assuntos
Nanopartículas Metálicas/toxicidade , Dióxido de Silício , Sobrevivência Celular/efeitos dos fármacos , Ouro , Humanos , Nanopartículas , Estresse Oxidativo
9.
Inorg Chem ; 56(11): 6234-6243, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28509561

RESUMO

The electronic and crystal structures of Cs2[Mo6X14] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al Kα, suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

10.
Sci Technol Adv Mater ; 18(1): 458-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740562

RESUMO

We report the photoluminescence (PL) and cathodoluminescence (CL) properties of face-capped [Mo6Xi8La6]2- (X = Cl, Br, I; L = organic or inorganic ligands) cluster units. We show that the emission of Mo6 metal atom clusters depends not only on the nature of X and L ligands bound to the cluster and counter-cations, but also on the excitation source. Seven members of the AxMo6Xi8La6 series (A = Cs+, (n-C4H9)4N+, NH4+) were selected to evaluate the influence of counter-cations and ligands on de-excitation mechanisms responsible for multicomponent emission of cluster units. This study evaluates the ageing of each member of the series, which is crucial for further energy conversion applications (photovoltaic, lighting, water splitting, etc.).

11.
Phys Chem Chem Phys ; 18(43): 30166-30173, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27778003

RESUMO

Bioimaging and cell labeling using red or near infrared phosphors emitting in the "therapeutic window" of biological tissues have recently become some of the most active research fields in modern medical diagnostics. However, because organic and inorganic autofluorophores are omnipresent in nature, very often the background signal from fluorochromes other than targeted probes has to be eliminated. This discrimination could be available using a time-gated luminescence microscopy (TGLM) technique associated with long lifetime phosphorescent nanocomposites. Here, we report new SiO2 nanostructured particle (50 nm in diameter) embedded luminescent nanosized [Mo6I8(C2F5COO)6]2- metal atom clusters (1 nm in diameter), successfully prepared by the microemulsion technique. This combination provides new physical insight and displays red emission in biological based solution under UV-Vis excitation with long lifetimes of around 17 and 84 µs. Moreover, the nanoparticles can be internalized by cancer cells after surface functionalization by transferrin protein and clearly imaged by TGLM under excitation at 365 nm. The nanocomposites have been mainly characterized by scanning and transmission electron microscopies (SEM and HAADF-STEM), UV-Vis and photoluminescence (PL) spectroscopies.

12.
Sci Technol Adv Mater ; 17(1): 597-609, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877906

RESUMO

The effects of laser irradiation on γ-Fe2O3 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-Fe2O3 phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-Fe2O3 nanocrystals are isolated from each other and uniformly dispersed in silica matrix. The phase stability of maghemite nanocrystals was examined in situ under laser irradiation by Raman spectroscopy and compared with that resulting from heat treatment by X-ray diffraction. It was concluded that ε-Fe2O3 is an intermediate phase between γ-Fe2O3 and α-Fe2O3 and a series of distinct Raman vibrational bands were identified with the ε-Fe2O3 phase. The structural transformation of γ-Fe2O3 into α-Fe2O3 occurs either directly or via ε-Fe2O3, depending on the rate of nanocrystal agglomeration, the concentration of iron oxide in the nanocomposite and the properties of silica matrix. A phase diagram is established as a function of laser power density and concentration.

13.
Sci Technol Adv Mater ; 17(1): 443-453, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877895

RESUMO

The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

14.
Anal Chem ; 87(20): 10346-53, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26383030

RESUMO

The foundation of nanoscience is that the properties of materials change as a function of their physical dimensions, and nanotechnology exploits this premise by applying selected property modifications for a specific benefit. However, to investigate the fate and effect of the engineered nanoparticles on toxic metal (TM) mobility, the analytical limitations in a natural environment remain a critical problem to overcome. Recently, a new generation of size exclusion chromatography (SEC) columns developed with spherical silica is available for pore sizes between 5 and 400 nm, allowing the analysis of nanoparticles. In this study, these columns were applied to the analysis of metal-based nanoparticles in environmental and artificial samples. The new method allows quantitative measurements of the interactions among nanoparticles, organic matter, and metals. Moreover, because of the new nanoscale SEC, our method allows the study of these interactions for different size ranges of nanoparticles and weights of organic molecules with a precision of 1.2 × 10(-2) kDa. The method was successfully applied to the study of nanomagnetite spiked in complex matrixes, such as sewage sludge, groundwater, tap water, and different artificial samples containing Leonardite humic acid and different toxic metals (i.e., As, Pb, Th). Finally, our results showed that different types of interactions, such as adsorption, stabilization, and/or destabilization of nanomagnetite could be observed using this new method.

15.
Chemistry ; 21(48): 17466-73, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26471940

RESUMO

Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.


Assuntos
Elementos da Série dos Lantanídeos/química , Polímeros/química , Íons , Luminescência , Nanopartículas , Compostos Organometálicos/química , Soluções
16.
Inorg Chem ; 54(12): 6043-54, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024151

RESUMO

For the first time, hexanuclear complexes with general chemical formula [Ln6O(OH)8(NO3)6(H2O)n](2+) with n = 12 for Ln = Sm-Lu and Y and n = 14 for Ln = Pr and Nd were stabilized as nanoaggregates in ethylene glycol (EG). These unprecedented nanoaggregates were structurally characterized by (89)Y and (1)H NMR spectroscopy, UV-vis absorption and luminescence spectroscopies, electrospray ionization mass spectrometry, diffusion ordered spectroscopy, transmission electron microscopy, and dynamic light scattering. These nanoaggregates present a 200 nm mean solvodynamic diameter. In these nanoaggregates, hexanuclear complexes are isolated and solvated by EG molecules. The replacement of ethylene glycol by 2-hydroxybenzyl alcohol provides new nanoaggregates that present an antenna effect toward lanthanide ions. This results in a significant enhancement of the luminescence properties of the aggregates and demonstrates the suitability of the strategy for obtaining highly tunable luminescent solutions.

17.
Sci Technol Adv Mater ; 16(3): 036002, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877813

RESUMO

Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of water and have also been extensively studied for environmental catalysis applications. Oxygen and cation non-stoichiometry can be tailored in a large number of perovskite compositions to achieve the desired catalytic activity, including multifunctional catalytic properties. Despite the extensive uses, the commercial success for this class of perovskite-based catalytic materials has not been achieved for vehicle exhaust emission control or for many other environmental applications. With recent advances in synthesis techniques, including the preparation of supported perovskites, and increasing understanding of promoted substitute perovskite-type materials, there is a growing interest in applied studies of perovskite-type catalytic materials. We have studied a number of perovskites based on Co, Mn, Ru, and Fe and their substituted compositions for their catalytic activity in terms of diesel soot oxidation, three-way catalysis, N2O decomposition, low-temperature CO oxidation, oxidation of volatile organic compounds, etc. The enhanced catalytic activity of these materials is attributed mainly to their altered redox properties, the promotional effect of co-ions, and the increased exposure of catalytically active transition metals in certain preparations. The recent lowering of sulfur content in fuel and concerns over the cost and availability of precious metals are responsible for renewed interest in perovskite-type catalysts for environmental applications.

18.
Chemistry ; 20(42): 13770-6, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25186659

RESUMO

Liquid-crystalline hybrid nanomaterials have been obtained by grafting mesogenic units around luminescent ZnO nanocrystals of 5 nm in diameter. Modifying the mesogenic density around the inorganic core allows the modulation of the liquid-crystalline behavior and its miscibility in commercial liquid crystal (LC). The strong blue photoluminescence observed for the hybrids can be modulated by applying a voltage on a LC cell containing commercial LC and 10 wt % of hybrid.

19.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770439

RESUMO

The high-performance defect-rich MoS2 dominated by sulfur vacancies as well as Mo-rich environments have been extensively studied in many fields, such as nitrogen reduction reactions, hydrogen evolution reactions, as well as sensing devices for NH3, which are attributed to the under-coordinated Mo atoms playing a significant role as catalytic sites in the defect area. In this study, the Mo cluster-MoS2 composite was creatively synthesized through a one-step sulfurization process via H2/H2S gas flow. The Mo6 cluster iodides (MIs) coated on the fluorine-doped tin oxide (FTO) glass substrate via the electrophoretic deposition method (i.e., MI@FTO) were used as a precursor to form a thin-film nanocomposite. Investigations into the structure, reaction mechanism, and NH3 gas sensing performance were carried out in detail. The results indicated that during the gas flowing, the decomposed Mo6 cluster iodides played the role of template and precursor, forming complicated Mo cluster compounds and eventually producing MoS2. These Mo cluster-MoS2 thin-film nanocomposites were fabricated and applied as gas sensors for the first time. It turns out that after the sulfurization process, the response of MI@FTO for NH3 gas increased three times while showing conversion from p-type to n-type semiconductor, which enhances their possibilities for future device applications.

20.
Sci Technol Adv Mater ; 18(1): 1-704, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057021
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA