RESUMO
CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1's enhancement of resting T-cell recruitment are discussed.
Assuntos
Quimiocina CCL19/química , Quimiocina CCL19/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores CCR7/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Conformação ProteicaRESUMO
Rocky Mountain spotted fever is caused by Rickettsia rickettsii infection. R. rickettsii can be transmitted to mammals, including humans, through the bite of an infected hard-bodied tick of the family Ixodidae. Since the R. rickettsii genome contains only one cold-shock-like protein and given the essential nature of cold-shock proteins in other bacteria, the structure of the cold-shock-like protein from R. rickettsii was investigated. With the exception of a short α-helix found between ß-strands 3 and 4, the solution structure of the R. rickettsii cold-shock-like protein has the typical Greek-key five-stranded ß-barrel structure found in most cold-shock domains. Additionally, the R. rickettsii cold-shock-like protein, with a ΔG of unfolding of 18.4â kJâ mol(-1), has a similar stability when compared with other bacterial cold-shock proteins.