Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 35(11): 2557-2566, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28233341

RESUMO

Since dislocation of total hip replacements (THR) remains a clinical problem, its mechanisms are still in the focus of research. Previous studies ignored the impact of soft tissue structures and dynamic processes or relied on simplified joint contact mechanics, thus, hindered a thorough understanding. Therefore, the purpose of the present study was to use hardware-in-the-loop (HiL) simulation to analyze systematically the impact of varying implant positions and designs as well as gluteal and posterior muscle function on THR instability under physiological-like loading conditions during dynamic movements. A musculoskeletal multibody model emulated the in situ environment of the lower extremity during deep sit-to-stand with femoral adduction maneuver while a six-axis robot moved and loaded a THR accordingly to feed physical measurements back to the multibody model. Commercial THRs with hard-soft bearings were used in the simulation with three different head diameters (28, 36, 44 mm) and two offsets (M, XL). Cup inclination of 45°, cup anteversion of 20°, and stem anteversion of 10° revealed to be outstandingly robust against any instability-related parameter variation. For the flexion motion, higher combined anteversion angles of cup and stem seemed generally favorable. Total hip instability was either deferred or even avoided even in the presence of higher cup inclination. Larger head diameters (>36 mm) and femoral head offsets (8 mm) deferred occurrence of prosthetic and bone impingement associated with increasing resisting torques. In summary, implant positioning had a much higher impact on total hip stability than gluteal insufficiency and impaired muscle function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2557-2566, 2017.


Assuntos
Artroplastia de Quadril/efeitos adversos , Luxação do Quadril/etiologia , Prótese de Quadril , Humanos , Músculo Esquelético/fisiologia , Robótica
2.
PLoS One ; 10(12): e0145798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717236

RESUMO

Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.


Assuntos
Simulação por Computador , Luxação do Quadril , Artroplastia de Quadril , Fenômenos Biomecânicos , Articulação do Quadril/fisiopatologia , Humanos , Lubrificação , Modelos Teóricos , Músculos/fisiopatologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA