Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983054

RESUMO

Protic ruthenium complexes using the dihydroxybipyridine (dhbp) ligand combined with a spectator ligand (N,N = bpy, phen, dop, Bphen) have been studied for their potential activity vs. cancer cells and their photophysical luminescent properties. These complexes vary in the extent of π expansion and the use of proximal (6,6'-dhbp) or distal (4,4'-dhbp) hydroxy groups. Eight complexes are studied herein as the acidic (OH bearing) form, [(N,N)2Ru(n,n'-dhbp)]Cl2, or as the doubly deprotonated (O- bearing) form. Thus, the presence of these two protonation states gives 16 complexes that have been isolated and studied. Complex 7A, [(dop)2Ru(4,4'-dhbp)]Cl2, has been recently synthesized and characterized spectroscopically and by X-ray crystallography. The deprotonated forms of three complexes are also reported herein for the first time. The other complexes studied have been synthesized previously. Three complexes are light-activated and exhibit photocytotoxicity. The log(Do/w) values of the complexes are used herein to correlate photocytotoxicity with improved cellular uptake. For Ru complexes 1-4 bearing the 6,6'-dhbp ligand, photoluminescence studies (all in deaerated acetonitrile) have revealed that steric strain leads to photodissociation which tends to reduce photoluminescent lifetimes and quantum yields in both protonation states. For Ru complexes 5-8 bearing the 4,4'-dhbp ligand, the deprotonated Ru complexes (5B-8B) have low photoluminescent lifetimes and quantum yields due to quenching that is proposed to involve the 3LLCT excited state and charge transfer from the [O2-bpy]2- ligand to the N,N spectator ligand. The protonated OH bearing 4,4'-dhbp Ru complexes (5A-8A) have long luminescence lifetimes which increase with increasing π expansion on the N,N spectator ligand. The Bphen complex, 8A, has the longest lifetime of the series at 3.45 µs and a photoluminescence quantum yield of 18.7%. This Ru complex also exhibits the best photocytotoxicity of the series. A long luminescence lifetime is correlated with greater singlet oxygen quantum yields because the triplet excited state is presumably long-lived enough to interact with 3O2 to yield 1O2.


Assuntos
Luminescência , Rutênio , Rutênio/química , Ligantes
2.
Inorg Chem ; 60(4): 2138-2148, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534562

RESUMO

Ruthenium complexes bearing protic diimine ligands are cytotoxic to certain cancer cells upon irradiation with blue light. Previously reported complexes of the type [(N,N)2Ru(6,6'-dhbp)]Cl2 with 6,6'-dhbp = 6,6'-dihydroxybipyridine and N,N = 2,2'-bipyridine (bipy) (1A), 1,10-phenanthroline (phen) (2A), and 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) (3A) show EC50 values as low as 4 µM (for 3A) vs breast cancer cells upon blue light irradiation ( Inorg. Chem. 2017, 56, 7519). Herein, subscript A denotes the acidic form of the complex bearing OH groups, and B denotes the basic form bearing O- groups. This photocytotoxicity was originally attributed to photodissociation, but recent results suggest that singlet oxygen formation is a more plausible cause of photocytotoxicity. In particular, bulky methoxy substituents enhance photodissociation but these complexes are nontoxic ( Dalton Trans 2018, 47, 15685). Cellular studies are presented herein that show the formation of reactive oxygen species (ROS) and apoptosis indicators upon treatment of cells with complex 3A and blue light. Singlet oxygen sensor green (SOSG) shows the formation of 1O2 in cell culture for cells treated with 3A and blue light. At physiological pH, complexes 1A-3A are deprotonated to form 1B-3B in situ. Quantum yields for 1O2 (ϕΔ) are 0.87 and 0.48 for 2B and 3B, respectively, and these are an order of magnitude higher than the quantum yields for 2A and 3A. The values for Ï•Δ show an increase with 6,6'-dhbp derived substituents as follows: OMe < OH < O-. TD-DFT studies show that the presence of a low lying triplet metal-centered (3MC) state favors photodissociation and disfavors 1O2 formation for 2A and 3A (OH groups). However, upon deprotonation (O- groups), the 3MLCT state is accessible and can readily lead to 1O2 formation, but the dissociative 3MC state is energetically inaccessible. The changes to the energy of the 3MLCT state upon deprotonation have been confirmed by steady state luminescence experiments on 1A-3A and their basic analogs, 1B-3B. This energy landscape favors 1O2 formation for 2B and 3B and leads to enhanced toxicity for these complexes under physiological conditions. The ability to convert readily from OH to O- groups allowed us to investigate an electronic change that is not accompanied by steric changes in this fundamental study.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Luz , Processos Fotoquímicos , Compostos de Rutênio/química , Oxigênio Singlete/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Prótons , Oxigênio Singlete/metabolismo , Espectrofotometria Ultravioleta
3.
Inorg Chem ; 56(13): 7519-7532, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28636344

RESUMO

Metallo prodrugs that take advantage of the inherent acidity surrounding cancer cells have yet to be developed. We report a new class of pH-activated metallo prodrugs (pHAMPs) that are activated by light- and pH-triggered ligand dissociation. These ruthenium complexes take advantage of a key characteristic of cancer cells and hypoxic solid tumors (acidity) that can be exploited to lessen the side effects of chemotherapy. Five ruthenium complexes of the type [(N,N)2Ru(PL)]2+ were synthesized, fully characterized, and tested for cytotoxicity in cell culture (1A: N,N = 2,2'-bipyridine (bipy) and PL, the photolabile ligand, = 6,6'-dihydroxybipyridine (6,6'-dhbp); 2A: N,N = 1,10-phenanthroline (phen) and PL = 6,6'-dhbp; 3A: N,N = 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) and PL = 6,6'-dhbp; 4A: N,N = bipy and PL = 4,4'-dimethyl-6,6'-dihydroxybipyridine (dmdhbp); 5A: N,N = 1,10-phenanthroline (phen) and PL = 4,4'-dihydroxybipyridine (4,4'-dhbp). The thermodynamic acidity of these complexes was measured in terms of two pKa values for conversion from the acidic form (XA) to the basic form (XB) by removal of two protons. Single-crystal X-ray diffraction data is discussed for 2A, 2B, 3A, 4B, and 5A. All complexes except 5A showed measurable photodissociation with blue light (λ = 450 nm). For complexes 1A-4A and their deprotonated analogues (1B-4B), the protonated form (at pH 5) consistently gave faster rates of photodissociation and larger quantum yields for the photoproduct, [(N,N)2Ru(H2O)2]2+. This shows that low pH can lead to greater rates of photodissociation. Cytotoxicity studies with 1A-5A showed that complex 3A is the most cytotoxic complex of this series with IC50 values as low as 4 µM (with blue light) versus two breast cancer cell lines. Complex 3A is also selectively cytotoxic, with sevenfold higher toxicity toward cancerous versus normal breast cells. Phototoxicity indices with 3A were as high as 120, which shows that dark toxicity is avoided. The key difference between complex 3A and the other complexes tested appears to be higher uptake of the complex as measured by inductively coupled plasma mass spectrometry, and a more hydrophobic complex as compared to 1A, which may enhance uptake. These complexes demonstrate proof of concept for dual activation by both low pH and blue light, thus establishing that a pHAMP approach can be used for selective targeting of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Luz , Pró-Fármacos/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Teoria Quântica , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Photochem Photobiol ; 98(1): 102-116, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411308

RESUMO

We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 µM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.


Assuntos
Neoplasias da Mama , Rutênio , Feminino , Humanos , Ligantes , Fenantrolinas , Rutênio/química , Compostos de Rutênio
5.
J Inorg Biochem ; 203: 110922, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31775072

RESUMO

The lipophilic vs. hydrophilic properties of three protic ruthenium compounds were studied as a function of pH. Specifically, we measured Log(Do/w) values for [(N,N)2Ru(6,6'-dhbp)]2+ complexes (where N,N = 2,2'-bipyridine (1A), 1,10-phenanthroline (2A), 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (3A) and 6,6'-dhbp is the diprotic 6,6'-dihydroxy-2,2'-bipyridine ligand) from pH 4.0 to 8.0. This study allowed us to demonstrate that as the ligand is deprotonated at higher pH values the resulting neutral charge on the complex improves its lipophilic properties. Thus, improved uptake by passive diffusion is expected with protic ligands on Ru(II). Furthermore, cellular studies have demonstrated that passive diffusion is the dominant pathway for cellular uptake. However, metabolic inhibition has also shown that energy dependent efflux reduces the amount of the ruthenium complex (as measured by mean fluorescence intensity) in the cells. These compounds have been shown by fluorescence microscopy to accumulate in the nuclei of cancer cells (MCF7, MDA-MB-231, and HeLa). Taken together, this data shows that uptake is required for toxicity but uptake alone is not sufficient. The greatest light activated toxicity appears to occur in breast cancer cell lines with relatively moderate uptake (MCF7 and MDA-MB-231) rather than the cell line with the greatest uptake of complex 3A (normal breast cell line MCF-10A).


Assuntos
Antineoplásicos/síntese química , Compostos Organometálicos/síntese química , Pró-Fármacos/síntese química , Rutênio/química , Antineoplásicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Difusão , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Compostos Organometálicos/farmacologia , Pró-Fármacos/farmacologia
6.
Endocrine ; 62(1): 26-33, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30128957

RESUMO

PURPOSE: Patients with differentiated thyroid cancer (DTC) typically have a favourable prognosis and recurrence as late as 45 years after diagnosis has been reported. International clinical guidelines for monitoring recommend routine thyroglobulin, ultrasound and physical examination for the detection of recurrence. The aim of this review was to systematically review whether routine monitoring using thyroglobulin (Tg), neck ultrasound and physical examination for recurrence in differentiated thyroid cancer patients is effective in improving patient survival and/or quality of life. METHODS: Primary studies were retrieved via a comprehensive search of three electronic bibliographic databases (PubMed, Web of Science Core Collection and Cochrane Library) without time restriction. Eligible studies must have reported on disease-free patients with DTC subject to long-term routine surveillance. The primary and secondary outcomes of interest were overall survival (or other survival parameters) and quality of life, respectively. RESULTS: Literature searches yielded 5529 citations, which were screened by two reviewers. 241 full texts were retrieved. No randomised controlled trials or two-arm cohort studies on the effectiveness of any of the three specified interventions were identified. However, three 'single-arm' studies reporting long-term follow-up outcomes in patients undergoing regular surveillance were identified and appraised. CONCLUSIONS: This review highlights a lack of empirical evidence to support current use of routine surveillance in DTC. Although early detection is possible, routine surveillance may lead to unnecessary intervention.


Assuntos
Pescoço/diagnóstico por imagem , Exame Físico , Tireoglobulina/sangue , Neoplasias da Glândula Tireoide/diagnóstico , Ultrassonografia , Medicina Baseada em Evidências , Humanos , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/diagnóstico por imagem
7.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 1): 31-34, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28083129

RESUMO

The crystal structure of the title salt, [Cu(ClO4)(C8H20N4)]ClO4, is reported. The CuII ion exhibits a square-pyramidal geometry and is coordinated by the four N atoms of the neutral 1,4,7,10-tetra-aza-cyclo-dodecane (cyclen) ligand and an O atom from one perchlorate anion, with the second perchlorate ion hydrogen-bonded to one of the amine N atoms of the cyclen ligand. Additional N-H⋯O hydrogen bonds between the amine H atoms and the coordinating and non-coordinating perchlorate groups create a three-dimensional network structure. Crystals were grown from a concentrated methanol solution at ambient temperature, resulting in no co-crystallization of solvent.

8.
J Chem Theory Comput ; 10(12): 5426-35, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583226

RESUMO

This work presents a systematic investigation into the basis set convergence of harmonic vibrational frequencies of (H2O)2 and (HF)2 computed with second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles and doubles method with perturbative connected triples, CCSD(T), while employing correlation-consistent basis sets as large as aug-cc-pV6Z. The harmonic vibrational frequencies presented here are expected to lie within a few cm(-1) of the complete basis set (CBS) limit. For these important hydrogen-bonding prototype systems, a basis set of at least quadruple-ζ quality augmented with diffuse functions is required to obtain harmonic vibrational frequencies within 10 cm(-1) of the CBS limit. In addition, second-order vibrational perturbation theory (VPT2) anharmonic corrections yield CCSD(T) vibrational frequencies in excellent agreement with experimental spectra, differing by no more than a few cm(-1) for the intramonomer fundamental vibrations. D0 values predicted by CCSD(T) VPT2 computations with a quadruple-ζ basis set reproduce the experimental values of (HF)2 and (H2O)2 to within 2 and 21 cm(-1), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA