Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys D Appl Phys ; 52(16): 163001, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33191949

RESUMO

Super-resolution microscopy (SRM) has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for SRM designed to combine high performance and ease of use. We named it NanoJ-a reference to the popular ImageJ software it was developed for. In this paper, we highlight the current capabilities of NanoJ for several essential processing steps: spatio-temporal alignment of raw data (NanoJ-Core), super-resolution image reconstruction (NanoJ-SRRF), image quality assessment (NanoJ-SQUIRREL), structural modelling (NanoJ-VirusMapper) and control of the sample environment (NanoJ-Fluidics). We expect to expand NanoJ in the future through the development of new tools designed to improve quantitative data analysis and measure the reliability of fluorescent microscopy studies.

2.
Nat Microbiol ; 4(10): 1636-1644, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285583

RESUMO

To achieve efficient binding and subsequent fusion, most enveloped viruses encode between one and five proteins1. For many viruses, the clustering of fusion proteins-and their distribution on virus particles-is crucial for fusion activity2,3. Poxviruses, the most complex mammalian viruses, dedicate 15 proteins to binding and membrane fusion4. However, the spatial organization of these proteins and how this influences fusion activity is unknown. Here, we show that the membrane of vaccinia virus is organized into distinct functional domains that are critical for the efficiency of membrane fusion. Using super-resolution microscopy and single-particle analysis, we found that the fusion machinery of vaccinia virus resides exclusively in clusters at virion tips. Repression of individual components of the fusion complex disrupts fusion-machinery polarization, consistent with the reported loss of fusion activity5. Furthermore, we show that displacement of functional fusion complexes from virion tips disrupts the formation of fusion pores and infection kinetics. Our results demonstrate how the protein architecture of poxviruses directly contributes to the efficiency of membrane fusion, and suggest that nanoscale organization may be an intrinsic property of these viruses to assure successful infection.


Assuntos
Fusão de Membrana/fisiologia , Vaccinia virus/fisiologia , Vírion/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HeLa , Humanos , Modelos Moleculares , Vacínia/virologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Vírion/química , Vírion/genética , Vírion/ultraestrutura , Internalização do Vírus
3.
J Vis Exp ; (122)2017 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-28448005

RESUMO

Super-resolution fluorescence microscopy is currently revolutionizing cell biology research. Its capacity to break the resolution limit of around 300 nm allows for the routine imaging of nanoscale biological complexes and processes. This increase in resolution also means that methods popular in electron microscopy, such as single-particle analysis, can readily be applied to super-resolution fluorescence microscopy. By combining this analytical approach with super-resolution optical imaging, it becomes possible to take advantage of the molecule-specific labeling capacity of fluorescence microscopy to generate structural maps of molecular elements within a metastable structure. To this end, we have developed a novel algorithm - VirusMapper - packaged as an easy-to-use, high-performance, and high-throughput ImageJ plugin. This article presents an in-depth guide to this software, showcasing its ability to uncover novel structural features in biological molecular complexes. Here, we present how to assemble compatible data and provide a step-by-step protocol on how to use this algorithm to apply single-particle analysis to super-resolution images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Algoritmos , Razão Sinal-Ruído , Software
4.
MethodsX ; 3: 508-512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003965

RESUMO

The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a "reservoir pressure" related to the global compliance and resistance of the arterial system, and an "excess pressure" that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation study shows the success of the principle, with the method producing largely robust and physically reasonable parameters, and the linear relationship between flow and wave pressure seen in the traditional pressure formulation is retained. The method was successfully tested on a cohort of 20 subjects (age range: 20-74 years; 17 males). This paper: •Demonstrates the feasibility of deriving reservoir data non-invasively from CMR.•Includes a validation cohort (CMR data).•Suggests clinical applications of the method.

5.
Sci Rep ; 6: 29132, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27374400

RESUMO

The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture.


Assuntos
Microscopia/métodos , Nanopartículas/química , Software , Vaccinia virus/química , Algoritmos , Células HeLa , Humanos , Vírion/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA