Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 99(2): 308-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35709481

RESUMO

PURPOSE: The purpose of this study was to quantify the microscopic dose distribution surrounding gold nanoparticles (GNPs) irradiated at therapeutic energies and to measure the changes in cell survival in vitro caused by this dose enhancement. METHODS: The dose distributions from secondary electrons surrounding a single gold nanosphere and single gold nanocube of equal volume were both simulated using MCNP6. Dose enhancement factors (DEFs) in the 1 µm3 volume surrounding a GNP were calculated and compared between a nanosphere and nanocube and between 6 and 18 MV energies. This microscopic effect was explored further by experimentally measuring the cell survival of C-33a cervical cancer cells irradiated at 18 MV with varying doses of energy and concentrations of GNPs. Survival of cells receiving no irradiation, a 3 Gy dose, and a 6 Gy dose of 18 MV energy were determined for each concentration of GNPs. RESULTS: It was observed that the dose from electrons surrounding the gold nanocube surpasses that of a gold nanosphere up to a distance of 1.1 µm by 18.5% for the 18 MV energy spectrum and by 23.1% for the 6 MV spectrum. DEFs ranging from ∼2 to 8 were found, with the maximum DEF resulting from the case of the gold nanocube irradiated at 6 MV energy. Experimentally, for irradiation at 18 MV, incubating cells with 6 nM (0.10% gold by mass) GNPs produces an average 6.7% decrease in cell survival, and incubating cells with 9 nM (0.15% gold by mass) GNPs produces an average 14.6% decrease in cell survival, as compared to cells incubated and irradiated without GNPs. CONCLUSION: We have successfully demonstrated the potential radiation dose enhancing effects in vitro and microdosimetrically from gold nanoparticles.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/farmacologia , Ouro/uso terapêutico , Método de Monte Carlo , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA