Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 21(9): 2992-3004, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33382168

RESUMO

Ischemia-reperfusion (I/R) injury occurring in heart transplantation (HT) remains as a leading cause of transplant heart graft failure. Circular RNAs (circRNAs) play important roles in gene regulation and diseases. However, the impact of circRNAs on I/R injury during HT remains unknown. This study aims to investigate the role of circular RNA Foxo3 (circFoxo3) in I/R injury in HT. Using an in vivo mouse HT model and an in vitro cardiomyocyte culture model, we demonstrated that circFoxo3 is significantly upregulated in I/R-injured hearts and hypoxia/reoxygenation (H/R)-damaged cardiomyocytes. Knockdown of circFoxo3 using siRNA not only reduces cell apoptosis and death, mitochondrial damage, and expression of apoptosis/death-related genes in vitro, but also protects heart grafts from prolonged cold I/R injury in HT. We also show that circFoxo3 interacts with Foxo3 proteins and inhibits the phosphorylation of Foxo3 and that it indirectly affects the expression of miR-433 and miR-136. In conclusion, circRNA is involved in I/R injury in HT and knockdown of circFoxo3 with siRNA can reduce I/R injury and improve heart graft function through interaction with Foxo3. This study highlights that circRNA is a new type of molecular regulator and a potential target for preventing I/R injury in HT.


Assuntos
Transplante de Coração , RNA Circular , Traumatismo por Reperfusão , Animais , Apoptose , Transplante de Coração/efeitos adversos , Camundongos , MicroRNAs/genética , Miócitos Cardíacos
2.
Cell Mol Biol Lett ; 25: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308692

RESUMO

BACKGROUND: Oxidative stress results in cell apoptosis/death and plays a detrimental role in disease development and progression. Stressors alter the miRNA expression profile and miRNAs play a role in the cell response to stress. We previously showed that miR-711 is significantly over-expressed in extended cold ischemia reperfusion injured hearts in heart transplant. In this study, we aimed to investigate the role of miR-711 in cardiac cell damage in response to oxidative stress and how miR-711 is regulated. METHODS: Rat cardiac cell line H9c2 cells were cultured and exposed to oxidative conditions (Antimycin A (AA), H2O2, CoCl2, or cold hypoxia/reoxygenation (H/R)) in vitro. H9c2 cells were transfected with miR-711 mimics, miR-711 inhibitors, or small interference RNA, using transfection reagents. The expression of miR-711 was measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell apoptosis/death was detected by flow cytometry and an IncuCyte system. Mitochondrial damage was detected by measuring the mitochondria membrane potential by flow cytometry. Gene expression was detected by qRT-PCR at the mRNA level and Western blotting and immunocytochemistry staining at the protein level. RESULTS: We found that miR-711 was significantly up-regulated in cells treated with H2O2, AA, CoCl2, and cold H/R. Over-expression of miR-711 increased cell apoptosis/death induced by AA and H/R whereas cell death was reduced by miR-711 inhibitors. MiR-711 induced cell death through negative regulation of angiopoietin 1 (Ang-1), fibroblast growth factor 14 (FGF14) and calcium voltage-gated channel subunit alpha1C (Cacna1c) genes. Both knockdown of hypoxia inducible factor 1α (HIF-1α) and inactivation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFКB) pathway inhibited over-expression of miR-711. CONCLUSION: Oxidative stress increases the expression of miR-711. Over-expression of miR-711 induces cell apoptosis/death. HIF-1α and NFКB regulate miR-711 in H9c2 cells during oxidative stress. miR-711 is a new target for preventing oxidative stress.


Assuntos
Apoptose/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/genética , Transdução de Sinais/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Antimicina A/toxicidade , Apoptose/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cobalto/toxicidade , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno , Ratos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
3.
Toxicol Appl Pharmacol ; 338: 20-29, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128401

RESUMO

Hydrogen sulfide (H2S) is a novel gasotransmitter and acts as a multifunctional regulator in various cellular functions. Past studies have demonstrated a significant role of H2S and its generating enzyme cystathionine gamma-lyase (CSE) in the cardiovascular system. Lipopolysaccharide (LPS), a major pathogenic factor, is known to initiate the inflammatory immune response. The cross talk between LPS-induced inflammation and the CSE/H2S system in vascular cells has not yet been elucidated in detail. Here we showed that LPS decreased CSE mRNA and protein expression in human endothelial cells and blocked H2S production in mouse aorta tissues. Transfection of the cells with TLR4-specific siRNA knockdown TLR4 mRNA expression and abolished the inhibitory role of LPS on CSE expression. Higher dose of LPS (100µg/ml) decreased cell viability, which was reversed by exogenously applied H2S at physiologically relevant concentration (30µM). Lower dose of LPS (10µg/ml) had no effect on cell viability, but significantly induced inflammation gene expressions and cytokines secretion and stimulated cell hyper-permeability. H2S treatment prevented LPS-induced inflammation and hyper-permeability. Lower VE-cadherin expression in LPS-incubated cells would contribute to cell hyper-permeability, which was reversed by H2S co-incubation. In addition, H2S treatment blocked LPS-induced NFκB transactivation. We further validated that LPS-induced hyper-permeability was reversed by CSE overexpression but further deteriorated by CRISPR/Cas9-mediated knockout of CSE. In vivo, deficiency of CSE sensitized the mice to LPS-induced inflammation in vascular tissues. Take together, these data suggest that CSE/H2S system protects LPS-induced inflammation and cell hyper-permeability by blocking NFκB transactivation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , NF-kappa B/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Animais , Antígenos CD/genética , Caderinas/genética , Células Cultivadas , Cistationina gama-Liase/fisiologia , Citocinas/genética , Células Endoteliais/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Masculino , Camundongos , NF-kappa B/genética , RNA Mensageiro/análise , Receptor 4 Toll-Like/genética
4.
Bioeng Transl Med ; 9(1): e10615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193111

RESUMO

Long-term patient and graft survival has been achieved in organ transplantation but at the expense of toxic side effects that are associated with long-term use of nonspecific immunosuppressive drugs. Discovering new regulators of dendritic cells is the key for development of an ideal treatment to prevent immune rejection. We hypothesized that knockdown of circMAP2K2 induces immunosuppressive DCs and that treatment with circMAP2K2 silenced-DCs can prevent alloimmune rejection. DCs were cultured and transfected with siRNA for circMAP2K2. circMAP2K2 levels were measured by qRT-PCR. DC's maturation and immune function were assessed by flow cytometry and mixed lymphocyte reactions. The function of circMAP2K2 was illustrated by a series of RIP and IP. The therapeutics of engineered DCs was tested in a mouse heart transplantation model. We found that circMAP2K2 was highly expressed in mature DCs. Knockdown of circMAP2K2 reduced expression of MHCII, CD40 and CD80, attenuated the ability of DCs to activate allogeneic naïve T cells, and enhanced CD4+CD25+FOXP3+ regulatory T cells (Treg). circMAP2K2-induced immunosuppressive DCs by interacting with SENP3. Treatment with circMAP2K2-knockdown DCs attenuated alloimmune rejection and prolonged allograft survival in a murine heart transplantation model. The immune suppression induced in vivo was donor-antigen specific. In conclusion, knockdown of circMAP2K2 can induce immunosuppressive DCs which are able to inhibit overactive immune response, highlighting a new promising therapeutic approach for immune disorder diseases.

5.
J Heart Lung Transplant ; 40(7): 584-594, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34052126

RESUMO

BACKGROUND: While heart transplantation is used as a standard treatment for heart failure, transplant rejection continues to pose a challenge. Recent evidence has shown that circular RNA (circRNA) is a new type of gene regulator in cell development. Our aim was to demonstrate that treatment with tolerogenic dendritic cells (Tol-DCs) generated by circular RNA FSCN1 (circFSCN1) silencing could prevent alloimmune rejection and prolong heart graft survival in heart transplantation. METHODS: Bone marrow-derived DCs were transfected with circFSCN1 siRNA in vitro. The circFSCN1 level was measured by qRT-PCR. DC maturation was determined by flow cytometry. Mixed lymphocyte reactions (MLRs) were conducted to assess the function of DCs to activate T cells and to generate regulatory T cells (Tregs). In situ RNA hybridization and fluorescent microscopy were performed to detect the distribution of circFSCN1 in DCs. A heterotopic allogeneic murine heart transplantation was conducted where recipients were pre-treated with donor derived circFSCN1-silenced Tol-DCs. Heartbeat was monitored to assess immune rejection. RESULTS: Exonic circFSCN1 was highly expressed in the cytoplasm of mature DCs. Knockdown of circFSCN1 using siRNA arrested DCs at an immature state, impaired DC's ability to activate T cells and enhanced Treg generation. Treatment with circFSCN1-silenced Tol-DCs prevented alloimmune rejection, prolonged allograft survival, reduced fibrosis, and induced Tregs in vivo. CONCLUSIONS: Knockdown of circFSCN1 induces Tol-DCs and treatment with these Tol-DCs prevents alloimmune rejection and prolongs allograft survival. This is a promising therapeutic target to combat transplant rejection in heart transplantation and increases our understanding of circRNA in the immune system.


Assuntos
Células Dendríticas/imunologia , Regulação da Expressão Gênica , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Tolerância Imunológica/genética , Proteínas dos Microfilamentos/genética , RNA Circular/genética , Receptores Odorantes/genética , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/biossíntese , Receptores Odorantes/biossíntese , Linfócitos T Reguladores/imunologia , Transplante Homólogo
6.
Oxid Med Cell Longev ; 2019: 6494306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583042

RESUMO

Cardiac hypertrophy is defined as the enlargement of the cardiac myocytes, leading to improper nourishment and oxygen supply due to the increased functional demand. This increased stress on the cardiac system commonly leads to myocardial infarction, contributing to 85% of all cardiac-related deaths. Cystathionine gamma-lyase- (CSE-) derived H2S is a novel gasotransmitter and plays a critical role in the preservation of cardiac functions. Selenocysteine lyase (SCLY) has been identified to produce H2Se, the selenium homologue of H2S. Deficiency of selenium is often found in Keshan disease, a congestive cardiomyopathy. The interaction of H2S and H2Se in cardiac cell hypertrophy has not been explored. In this study, cell viability was evaluated with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Oxidative stress and cell size were observed through immunostaining. The expression of genes was determined by real-time PCR and western blot. Here, we demonstrated that incubation of rat cardiac cells (H9C2) with H2O2 lead to increased oxidative stress and cell surface area, which were significantly attenuated by pretreatment of either H2S or H2Se. H2S incubation induced SCLY/H2Se signaling, which next caused higher expressions and activities of selenoproteins, including glutathione peroxidase and thioredoxin reductase. Furthermore, deficiency of CSE inhibited the expressions of SCLY and selenoprotein P in mouse heart tissues. We also found that both H2S and H2Se stimulated Nrf2-targeted downstream genes. These data suggests that H2S protects against cardiac hypertrophy through enhancement of a group of antioxidant proteins.


Assuntos
Cardiomegalia/tratamento farmacológico , Sulfeto de Hidrogênio/uso terapêutico , Miócitos Cardíacos/metabolismo , Selenoproteínas/metabolismo , Animais , Sulfeto de Hidrogênio/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA