Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475894

RESUMO

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Assuntos
Fígado/citologia , Fígado/fisiologia , Ribossomos/metabolismo , Animais , Núcleo Celular/metabolismo , Tamanho Celular , Ritmo Circadiano , Exossomos/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoperíodo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/química
2.
Genes Dev ; 35(11-12): 899-913, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016691

RESUMO

In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.


Assuntos
Relógios Circadianos/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , Animais , Retroalimentação Fisiológica , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Circadianas Period/genética
3.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452855

RESUMO

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Assuntos
Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Animais , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Cruzamentos Genéticos , Citoplasma/metabolismo , Proteínas F-Box/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteólise
4.
Trends Biochem Sci ; 47(9): 745-758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577675

RESUMO

The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Descoberta de Drogas
5.
Genes Dev ; 30(17): 1909-10, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664233

RESUMO

In mammals, rhythms in body temperature help to entrain and synchronize circadian rhythms throughout the organism, and the cold-inducible RNA-binding protein (CIRBP) is one of the mediators of these daily temperature changes. Cirbp mRNA expression is regulated by the daily subtle rhythms in body temperature, and a new study by Gotic and colleagues (pp. 2005-2017) reveals a surprising and novel mechanism that involves temperature-dependent enhancement of splicing efficiency.


Assuntos
Ritmo Circadiano/genética , Temperatura Baixa , Animais , Splicing de RNA , Temperatura
6.
Cell ; 134(5): 728-42, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775307

RESUMO

The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.


Assuntos
Ritmo Circadiano , Redes e Vias Metabólicas , Animais , Relógios Biológicos , Comportamento Alimentar , Humanos
7.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879354

RESUMO

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Assuntos
Ritmo Circadiano/fisiologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidases/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcriptoma
8.
Biochemistry ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535990

RESUMO

Endogenous circadian clocks control the rhythmicity of a broad range of behavioral and physiological processes, and this is entrained by the daily fluctuations in light and dark. Nocturnin (Noct) is a rhythmically expressed gene regulated by the circadian clock that belongs to the CCR4 family of endonuclease-exonuclease-phosphatase (EEP) enzymes, and the NOCT protein exhibits phosphatase activity, catalyzing the removal of the 2'-phosphate from NADP(H). In addition to its daily nighttime peak of expression, it is also induced by acute stimuli. Loss of Nocturnin (Noct-/-) in mice results in resistance to high-fat diet-induced obesity, and loss of Noct in HEK293T cells confers a protective effect to oxidative stress. Modeling of the full-length Nocturnin protein reveals a partially structured amino terminus that is disparate from its CCR4 family members. The high sequence conservation of a leucine zipper-like (LZ-like) motif, the only structural element in the amino terminus, highlights the potential importance of this domain in modulating phosphatase activity. In vitro biochemical and biophysical techniques demonstrate that the LZ-like domain within the flexible N-terminus is necessary for preserving the active site cleft in an optimal conformation to promote the efficient turnover of the substrate. This modulation occurs in cis and is pivotal in maintaining the stability and conformational integrity of the enzyme. These new findings suggest an additional layer of modulating the activity of Nocturnin in addition to its rhythmicity to provide fine-tuned control over cellular levels of NADPH.

9.
Proc Natl Acad Sci U S A ; 116(39): 19449-19457, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484780

RESUMO

Computational and biochemical studies implicate the blue-light sensor cryptochrome (CRY) as an endogenous light-dependent magnetosensor enabling migratory birds to navigate using the Earth's magnetic field. Validation of such a mechanism has been hampered by the absence of structures of vertebrate CRYs that have functional photochemistry. Here we present crystal structures of Columba livia (pigeon) CRY4 that reveal evolutionarily conserved modifications to a sequence of Trp residues (Trp-triad) required for CRY photoreduction. In ClCRY4, the Trp-triad chain is extended to include a fourth Trp (W369) and a Tyr (Y319) residue at the protein surface that imparts an unusually high quantum yield of photoreduction. These results are consistent with observations of night migratory behavior in animals at low light levels and could have implications for photochemical pathways allowing magnetosensing.


Assuntos
Columbidae/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Sequência de Aminoácidos , Migração Animal/fisiologia , Animais , Luz , Campos Magnéticos , Fotoquímica/métodos , Relação Estrutura-Atividade , Vertebrados/metabolismo
10.
Eur J Neurosci ; 51(1): 139-165, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30402960

RESUMO

Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL , Animais , Proteínas CLOCK/genética , Ritmo Circadiano
11.
Annu Rev Neurosci ; 35: 445-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22483041

RESUMO

The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Mamíferos/fisiologia , Metanfetamina/farmacologia , Modelos Biológicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(42): E8855-E8864, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973913

RESUMO

We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.


Assuntos
Ritmo Circadiano/fisiologia , MicroRNAs/genética , Proteínas Circadianas Period/genética , Regiões 3' não Traduzidas , Animais , Relógios Circadianos/genética , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Luciferases/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Circadianas Period/metabolismo , Biossíntese de Proteínas , Temperatura
13.
Genes Dev ; 26(24): 2724-36, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23249735

RESUMO

Poly(A) tails are 3' modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Poli A/genética , RNA Mensageiro/genética , Animais , Citoplasma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliadenilação , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
J Cell Physiol ; 234(11): 20228-20239, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30953371

RESUMO

Nocturnin (NOCT) belongs to the Mg2+ dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ. In this study, we characterized the skeletal and adipose tissue phenotype when we globally overexpressed Noct in vivo. After 12 weeks of Noct overexpression, transgenic male mice had lower fat mass compared to controls, with no significant differences in the skeleton. Based on the presence of a mitochondrial target sequence in NOCT, we determined that mouse NOCT protein localizes to the mitochondria; subsequently, we found that NOCT overexpression led to a significant increase in the preadipocytes ability to utilize oxidative phosphorylation for ATP (adenosine triphosphate) generation. In summary, the effects of NOCT on adipocytes are likely through its novel role as a mediator of mitochondrial function.


Assuntos
Adipogenia/fisiologia , Gorduras/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Modelos Animais , Fosforilação Oxidativa , PPAR gama/metabolismo , RNA Mensageiro/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(44): E4769-78, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25324524

RESUMO

The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)). FUS(WT) and FUS(R521G) mice that develop severe motor deficits also show neuroinflammation, denervated neuromuscular junctions, and premature death, phenocopying the human diseases. A portion of FUS(R521G) mice escape early lethality; these escapers have modest motor impairments and altered sociability, which correspond with a reduction of dendritic arbors and mature spines. Remarkably, only FUS(R521G) mice show dendritic defects; FUS(WT) mice do not. Activation of metabotropic glutamate receptors 1/5 in neocortical slices and isolated synaptoneurosomes increases endogenous mouse FUS and FUS(WT) protein levels but decreases the FUS(R521G) protein, providing a potential biochemical basis for the dendritic spine differences between FUS(WT) and FUS(R521G) mice.


Assuntos
Substituição de Aminoácidos , Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Mutação de Sentido Incorreto , Junção Neuromuscular , Proteína FUS de Ligação a RNA , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Dendritos/genética , Dendritos/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia
16.
Biochemistry ; 54(2): 124-33, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25303020

RESUMO

To maintain daily cycles, the circadian clock must tightly regulate the rhythms of thousands of mRNAs and proteins with the correct period, phase, and amplitude to ultimately drive the wide range of rhythmic biological processes. Recent genomic approaches have revolutionized our view of circadian gene expression and highlighted the importance of post-transcriptional regulation in driving mRNA rhythmicity. Even after transcripts are made from DNA, subsequent processing and regulatory steps determine when, where, and how much protein will be generated. These post-transcriptional regulatory mechanisms can add flexibility to overall gene expression and alter protein levels rapidly without requiring transcript synthesis and are therefore beneficial for cells; however, the extent to which circadian post-transcriptional mechanisms contribute to rhythmic profiles throughout the genome and the mechanisms involved have not been fully elucidated. In this review, we will summarize how circadian genomics have revealed new insights into rhythmic post-transcriptional regulation in mammals and discuss potential implications of such regulation in controlling many circadian-driven physiologies.


Assuntos
Relógios Circadianos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Proteínas CLOCK/genética , Ritmo Circadiano , Regulação da Expressão Gênica , Genômica , Humanos , Proteínas/genética , Proteômica , RNA Mensageiro/genética
17.
J Biol Chem ; 288(49): 35277-86, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24158435

RESUMO

The Cryptochrome (CRY) proteins are critical components of the mammalian circadian clock and act to rhythmically repress the activity of the transcriptional activators CLOCK and BMAL1 at the heart of the clock mechanism. The CRY proteins are part of a large repressive complex, the components of which are not completely known. Using mass spectroscopy, we identified the catalytic subunit of DNA-dependent protein kinase as a CRY-interacting protein and found that loss or inhibition of this kinase results in circadian rhythms with abnormally long periods. We then identified serine 588 in the C-terminal tail of mouse CRY1 as a potential DNA-PK phosphorylation site but surprisingly found that the phosphomimetic mutation S588D also results in long period rhythms, similar to the loss of DNA-PK. Consistent with this, we found that phosphorylation of this site is increased in cells lacking DNA-PK, suggesting that DNA-PK negatively regulates the phosphorylation of this site most likely through indirect means. Furthermore, we found that phosphorylation of this site increases the stability of the CRY1 protein and prevents FBXL3-mediated degradation. The phosphorylation of this site is robustly rhythmic in mouse liver nuclei, peaking in the middle of the circadian day at a time when CRY1 levels are declining. Therefore, these data suggest a new role for the C-terminal tail of CRY1 in which phosphorylation rhythmically regulates CRY1 stability and contributes to the proper circadian period length.


Assuntos
Relógios Circadianos/fisiologia , Criptocromos/química , Criptocromos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Relógios Circadianos/genética , Criptocromos/deficiência , Criptocromos/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosforilação , Estabilidade Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química
18.
Biochim Biophys Acta ; 1829(6-7): 571-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23274303

RESUMO

PARN, Nocturnin and Angel are three of the multiple deadenylases that have been described in eukaryotic cells. While each of these enzymes appear to target poly(A) tails for shortening and influence RNA gene expression levels and quality control, the enzymes differ in terms of enzymatic mechanisms, regulation and biological impact. The goal of this review is to provide an in depth biochemical and biological perspective of the PARN, Nocturnin and Angel deadenylases. Understanding the shared and unique roles of these enzymes in cell biology will provide important insights into numerous aspects of the post-transcriptional control of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Exorribonucleases/genética , Proteínas Nucleares/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Exorribonucleases/química , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/química , Poli A/química , Poli A/genética , Estrutura Secundária de Proteína , Fatores de Transcrição/química
19.
J Cell Sci ; 124(Pt 3): 311-20, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21242310

RESUMO

Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Processamento Alternativo/fisiologia , Animais , Dinoflagellida , Drosophila , Exossomos/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Neurospora , Plantas , Estabilidade de RNA/fisiologia
20.
Proc Natl Acad Sci U S A ; 107(23): 10508-13, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498072

RESUMO

Nocturnin (NOC) is a circadian-regulated protein related to the yeast family of transcription factors involved in the cellular response to nutrient status. In mammals, NOC functions as a deadenylase but lacks a transcriptional activation domain. It is highly expressed in bone-marrow stromal cells (BMSCs), hepatocytes, and adipocytes. In BMSCs exposed to the PPAR-gamma (peroxisome proliferator-activated receptor-gamma) agonist rosiglitazone, Noc expression was enhanced 30-fold. Previously, we reported that Noc(-/-) mice had low body temperature, were protected from diet-induced obesity, and most importantly exhibited absence of Pparg circadian rhythmicity on a high-fat diet. Consistent with its role in influencing BMSCs allocation, Noc(-/-) mice have reduced bone marrow adiposity and high bone mass. In that same vein, NOC overexpression enhances adipogenesis in 3T3-L1 cells but negatively regulates osteogenesis in MC3T3-E1 cells. NOC and a mutated form, which lacks deadenylase activity, bind to PPAR-gamma and markedly enhance PPAR-gamma transcriptional activity. Both WT and mutant NOC facilitate nuclear translocation of PPAR-gamma. Importantly, NOC-mediated nuclear translocation of PPAR-gamma is blocked by a short peptide fragment of NOC that inhibits its physical interaction with PPAR-gamma. The inhibitory effect of this NOC-peptide was partially reversed by rosiglitazone, suggesting that effect of NOC on PPAR-gamma nuclear translocation may be independent of ligand-mediated PPAR-gamma activation. In sum, Noc plays a unique role in the regulation of mesenchymal stem-cell lineage allocation by modulating PPAR-gamma activity through nuclear translocation. These data illustrate a unique mechanism whereby a nutrient-responsive gene influences BMSCs differentiation, adipogenesis, and ultimately body composition.


Assuntos
Adipogenia , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Composição Corporal , Linhagem Celular , Linhagem da Célula , Ritmo Circadiano , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Osteoblastos/citologia , Osteoblastos/metabolismo , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA